17.已知$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$
(1)當(dāng)x∈R時,f(x)有最大值6,求m的值;
(2)在(1)的條件下,求f(x)單調(diào)遞減區(qū)間.

分析 (1)根據(jù)f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$,化簡可得f(x)的關(guān)系式,結(jié)合三角函數(shù)的性質(zhì)可得答案.
(2)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;

解答 解:$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,
∴$f(x)=2\overrightarrow a•\overrightarrow b+2m-1=2\sqrt{3}sinxcosx+2{cos^2}x+2m-1$,
=$\sqrt{3}$sin2x+cos2x+2m.
=2sin(2x+$\frac{π}{6}$)+2m.
(1)當(dāng)x∈R時,f(x)有最大值6,
∴2+2m=6.
可得:m=2.
(2)由(1)可知$f(x)=2sin({2x+\frac{π}{6}})+4$,
令$2kπ+\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{3π}{2},k∈Z$
得:$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ$.
∴f(x)的單調(diào)遞減區(qū)間為$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}],k∈Z$.

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)O,A,B為平面上三點(diǎn),且點(diǎn)P在直線AB上,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n=(  )
A.0B.-1C.1D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=3cos2x-4sinx+1的值域?yàn)閇-3,$\frac{16}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.$2(\overrightarrow a-\overrightarrow b)-4(\overrightarrow a+\overrightarrow b)$=-2$\overrightarrow{a}$-6$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示:在邊長為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.計算1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(  )
A.37-$\frac{1}{{2}^{8}}$B.36C.36-$\frac{1}{{2}^{8}}$D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{y≤2x+2}\end{array}}\right.$,則z=2x+y的最大值與最小值和等于( 。
A.-4B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.向上拋擲兩個質(zhì)地均勻的骰子記向上點(diǎn)數(shù)之和為X
(1)求P(X=4).
(2)求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知平面內(nèi)M,N,P,Q四點(diǎn),其中N,P,Q三點(diǎn)共線,且$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$+μ$\overrightarrow{MP}$,則λ+μ=1.

查看答案和解析>>

同步練習(xí)冊答案