雙曲線
x2
3
-y2=1的焦點(diǎn)坐標(biāo)為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的方程和性質(zhì)即可得到結(jié)論.
解答: 解:由雙曲線的方程可知,a2=3,b2=1,
則c2=a2+b2=3+1=4,即c=2,
故雙曲線的焦點(diǎn)坐標(biāo)為:(±2,0),
故答案為:(±2,0)
點(diǎn)評(píng):本題主要考查雙曲線的性質(zhì)和方程,根據(jù)a,b,c之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1+cosx)=sin2x,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(m2-m-1)xm2-2m-3是冪函數(shù),其圖象不過原點(diǎn),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3a2+3b2-2ab=4,則a2+b2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象向右平移1個(gè)單位長度,所得圖象與曲線y=ex關(guān)于y軸對(duì)稱,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過極坐標(biāo)為(0,0),(6,
π
2
),(6
2
,
π
4
)三點(diǎn)的圓的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三角形ABC的內(nèi)切圓為圓O,則△ABC內(nèi)的一點(diǎn)落在圓O外部的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)于任意給定的a,b∈R,a*b為唯一的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+a*c+c*b-2c;
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值是3;
②|f(x)-1|≥2;
③函數(shù)f(x)是奇函數(shù);
④函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-
1
2
)(
1
2
,+∞)
其中所有正確說法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sinx+2cosx的最小值是( 。
A、0
B、-3
C、-5
D、-
13

查看答案和解析>>

同步練習(xí)冊(cè)答案