【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖.
(1)求;
(2)引進(jìn)這種設(shè)備后,從第幾年開始該公司能夠獲利?
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
【答案】(1) ;(2)從第2年該公司開始獲利;(3)這種設(shè)備使用5年,該公司的年平均獲利最大
【解析】試題(1)由圖可知,每年費(fèi)用是以為首項(xiàng),為公差的等差數(shù)列,所以;(2)設(shè)純收入與年數(shù)的關(guān)系為,則:,由解得,點(diǎn)的最小值為;(3)年平均收入為,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立.
試題解析:
(1)由題意知,每年費(fèi)用是以2為首項(xiàng),2為公差的等差數(shù)列,求得:
(2)設(shè)純收入與年數(shù)的關(guān)系為,則:
由各,解得
又因?yàn)?/span>,所以,即從第2年該公司開始獲利
(3)年平均收入為
當(dāng)且僅當(dāng)時(shí),年平均收益最大,
所以這種設(shè)備使用5年,該公司的年平均獲利最大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從地去地有①或②兩條路可走,并且汽車走路①堵車的概率為,汽車走路②堵車的概率為,若現(xiàn)在有兩輛汽車走路①,有一輛汽車走路②,且這三輛車是否堵車相互之間沒有影響,
(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求走路②堵車的概率;
(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線
C. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為x軸,其準(zhǔn)線過點(diǎn).
(1)求拋物線C的方程;
(2)過拋物線焦點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線l的距離都為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線和曲線的參數(shù)方程分別為(為參數(shù)),(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線、曲線的普通方程,以及曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線,在第一象限內(nèi)的交點(diǎn)分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性,并說明理由;
(2)判斷的奇偶性,并用定義證明;
(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會(huì)為了解各所學(xué)校學(xué)生的學(xué)情,欲從四地選取200人作樣本開展調(diào)研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調(diào)研結(jié)果相對(duì)準(zhǔn)確,下列判斷正確的有( )
①用分層抽樣的方法分別抽取荊州地區(qū)學(xué)生25人、荊門地區(qū)學(xué)生50人、襄陽地區(qū)學(xué)生75人、宜昌地區(qū)學(xué)生50人;
②可采用簡單隨機(jī)抽樣的方法從所有考生中選出200人開展調(diào)研;
③宜昌地區(qū)學(xué)生小劉被選中的概率為;
④襄陽地區(qū)學(xué)生小張被選中的概率為.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, , .等 差數(shù)列中, ,且公差.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com