分析 (1)取AC的中點M,連接C1M,FM,則FM∥AB,然后由線面平行的判定得FM∥平面ABE,在矩形ACC1A1中,由已知得C1M∥AE,再由面面平行的判定得平面ABE∥平面FMC1,從而得到C1F∥平面ABE;
(2)取B1C1中點H,連接EH,則EH∥AB,且EH=$\frac{1}{2}AB$=$\sqrt{3}$,在由AB⊥平面BB1C1C,得EH⊥平面BB1C1C,結合P是BE的中點,利用等積法求得${V}_{P-{B}_{1}{C}_{1}F}=\frac{1}{2}{V}_{E-{B}_{1}{C}_{1}F}$得答案.
解答 證明:(1)取AC的中點M,連接C1M,FM,則FM∥AB,
又FM?平面ABE,AB?平面ABE,
∴FM∥平面ABE,
在矩形ACC1A1中,E、M分別為A1C1、AC的中點,
∴C1M∥AE,
而C1M?平面ABE,
∴C1M∥平面ABE,
又∵C1M∩FM=M,
∴平面ABE∥平面FMC1,
又∵C1F?平面C1FM,
∴C1F∥平面ABE;
解:(2)取B1C1中點H,連接EH,則EH∥AB,且EH=$\frac{1}{2}AB$
在△ABC中,∵AC=4,CB=2,AA1=2,∠ACB=60°,
∴AB=2$\sqrt{3}$,
則EH=$\sqrt{3}$,由AB⊥平面BB1C1C,得EH⊥平面BB1C1C,
∵P是BE的中點,
∴${V}_{P-{B}_{1}{C}_{1}F}=\frac{1}{2}{V}_{E-{B}_{1}{C}_{1}F}=\frac{1}{2}×\frac{1}{3}{S}_{△{B}_{1}{C}_{1}F}•EH=\frac{1}{2}×\frac{1}{3}×2×\sqrt{3}=\frac{\sqrt{3}}{3}$.
點評 本題考查直線與平面平行的判定,考查棱錐體積的求法,考查了空間想象能力和思維能力,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | y=$\sqrt{x}$ | B. | y=|x|(x≥1) | C. | y=x${\;}^{\frac{2}{3}}$ | D. | y=x3+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -x+$\frac{π}{6}$,$\frac{π}{6}$ | B. | x+$\frac{5π}{6}$,$\frac{5π}{6}$ | C. | x-$\frac{π}{6}$,-$\frac{π}{6}$ | D. | x+$\frac{5π}{6}$,$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com