分析 設(shè)f(x)=$\frac{2x+1}{{x}^{2}+1}$,x∈(1,3),令t=2x+1,3<t<7,可得t的函數(shù),運(yùn)用變量分離法,可得函數(shù)的值域,結(jié)合條件可得m的范圍.
解答 解:設(shè)f(x)=$\frac{2x+1}{{x}^{2}+1}$,x∈(1,3),
令t=2x+1,3<t<7,
則f(x)=$\frac{t}{\frac{(t-1)^{2}}{4}+1}$
=$\frac{4t}{{t}^{2}-2t+5}$=$\frac{4}{t+\frac{5}{t}-2}$,
由t+$\frac{5}{t}$在(3,7)遞增,
即有t+$\frac{5}{t}$∈($\frac{14}{3}$,$\frac{54}{7}$),
則f(x)∈($\frac{7}{10}$,$\frac{3}{2}$),
m≤$\frac{2x+1}{{x}^{2}+1}$在x∈(1,3)時(shí)無解,
即有m≥$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)與不等式的關(guān)系,構(gòu)造函數(shù)求出值域是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com