化簡 sin(α+180°)cos(-α)sin(-α-180°).
考點:運用誘導公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由條件利用誘導公式化簡可得所給式子的值,可得結(jié)果.
解答: 解:sin(α+180°)cos(-α)sin(-α-180°)=-sinα•cosα•sinα=-
1
2
sin2αcosα.
點評:本題主要考查應用誘導公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a5+a9=
3
,則tana7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別是a,b,c,∠A=60°,c=2,且△ABC的面積為
3
2
,則a邊的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
3-i
1-i
(i是虛數(shù)單位)的虛部是( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=2x,x≥0},N={x|y=lg(2x-x2)},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的方程為y=kx+k+1,當點P(2,-1)與直線l距離最遠時,直線l的斜率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上的橢圓C的短軸長為2,離心率為
3
2

(1)求橢圓C的標準方程;
(2)如圖所示,A1,A2,B1,B2是橢圓C的頂點,E是橢圓上任意一點(頂點除外)B1E交x軸于點P,直線A2B1交A1E于點G,設直線A1E的斜率為k1,直線GP的斜率為k2,證明k1-2k2為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在同一平面直角坐標系中,求滿足下列圖形變換的伸縮變換:
(1)直線x-2y=2變成2x′-y′=4;
(2)曲線x2-y2-2x=0變成曲線x′2-16y′2-4x′=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4,g(x)=
2x
2x+1

(1)求函數(shù)y=g(x)的值域;
(2)求函數(shù)y=f(x)的最小值m(a);
(3)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案