函數(shù)y=f(x)在定義域(-2,4)內(nèi)可導,其圖象如圖所示,設函數(shù)f(x)的導函數(shù)為f′(x),則不等式f′(x)>0的解集為
 
′.
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的概念及應用
分析:通過圖象得出函數(shù)的單調(diào)遞增區(qū)間,從而求出不等式的解集.
解答: 解:由圖象得:
f(x)在(-2,-
4
3
),(,
1
2
,2)遞增,
∴在(-2,-
4
3
),(,
1
2
,2)上f′(x)>0,
故f′(x)>0的解集是:(-2,-
4
3
)∪(
1
2
,2),
故答案為:(-2,-
4
3
)∪(
1
2
,2).
點評:本題考查了函數(shù)的單調(diào)性,考查數(shù)形結(jié)合思想,考查導數(shù)的應用,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx+
1
2
x2,g(x)=3x+b-1.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)設F(x)=f(x)-g(x),
(。┣蠛瘮(shù)y=F(x)的單調(diào)區(qū)間;
(ⅱ)若方程F(x)=0有3個不同的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+k|lnx-1|,g(x)=x|x-k|-2,其中0<k≤4.
(1)討論函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;
(2)若對于任意x1∈[1,+∞),都存在x2∈[2,+∞),使得f(x1)=g(x2),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2xsinθ-1,x∈[-
3
2
1
2
]

(1)若θ=
π
6
,求f(x)的最大值和最小值.
(2)若f(x)在[-
3
2
,
1
2
]
上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+1,-1≤x<0
cosx,0≤x<
π
2
的圖象與x軸所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=4x+x2在點(-1,-3)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
1-lgx
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線ax+by+1=0(a、b>0)過圓x2+y2+2x+2y+1=0的圓心,則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若[x]表示不超過x的最大整數(shù)(如[1.3]=1,[-2
1
4
]=-3等等),則[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]=
 

查看答案和解析>>

同步練習冊答案