3.命題“對任意x∈R,都有f(x)≤0”的否定是(  )
A.對任意x∈R,都有f(x)>0B.存在x∈R,使f(x)>0
C.存在x∈R,使f(x)≥0D.對任意x∈R,都有f(x)≥0

分析 根據(jù)全稱命題的否定方法,結(jié)合已知中的原命題,可得答案.

解答 解:命題“對任意的x∈R,都有f(x)≤0”的否定是存在x∈R,使f(x)>0”,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是全稱命題的否定方法,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個學(xué)校共有2000名學(xué)生,含初一、初二、初三、高一、高二、高三六個年級,要采用分層抽樣方法從全部學(xué)生中抽取一個容量為50的樣本,已知高一有600名學(xué)生,那么從高一年級抽取的學(xué)生人數(shù)是15人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC的面積是$\frac{1}{2}$,∠B是鈍角,AB=1,BC=$\sqrt{2}$,則AC=(  )
A.5B.2C.$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知兩個命題p:?x∈R,sinx+cosx>m恒成立,q:?x∈R,y=(2m2-m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若曲線y=ax2+$\frac{x}$(a,b為常數(shù))過點(diǎn)P(2,-5),且該曲線在點(diǎn)P處的切線與直線2x-7y+3=0垂直,則a+b的值等于-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,兩個頂點(diǎn)分別為A(-a,0),B(a,0),點(diǎn)M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,過點(diǎn)M斜率為k(k≠0)的直線交橢圓E于C,D兩點(diǎn),且點(diǎn)C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線BC,BD的斜率分別為k1,k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)若B=∅,求m的取值范圍;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(理)設(shè)F1,F(xiàn)2分別是雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=( 。
A.$\sqrt{13}$B.2$\sqrt{17}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案