18.下列命題正確的是( 。
A.向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量
B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四個頂點
C.$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線
D.有相同起點的兩個非零向量不平行

分析 根據(jù)平面向量的基本概念,對選項中的命題進行分析、判斷真假性即可.

解答 解:對于A,若$\overrightarrow{a}$或$\overrightarrow$是非零向量,則向量$\overrightarrow{a}$與$\overrightarrow$共線是真命題,
所以它的逆否命題也是真命題;
對于B,任意兩個相等的非零向量的始點與終點是一平行四邊形的四個頂點,
或四個頂點在一條直線上,故原命題錯誤;
對于C,$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線時,$\overrightarrow{a}$與$\overrightarrow{c}$也共線,
當(dāng)$\overrightarrow$=$\overrightarrow{0}$時命題不一定成立,故是假命題;
對于D,有相同起點的兩個非零向量也可能平行,故原命題錯誤.
綜上,正確的命題是A.
故選:A.

點評 本題考查了平面向量的基本概念與命題真假的判斷問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某消防員在一次執(zhí)行任務(wù)過程中,遇到突發(fā)事件,需從10m長的直桿頂端從靜止開始勻加速下滑,加速度大小a1=8m/s2.然后立即勻減速下滑,減速時的最大加速度a2=4m/s2.若落地時的速度不允許超過4m/s,把消防員看成質(zhì)點,求該消防員下滑全過程的最短時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義在(0,+∞)上的函數(shù)f(x),總有f′(x)>f(x)+ex-lnx成立,且f(2)=e2-2,則不等式f(x)≥ex-2的解集為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l1:y=k(x+1)-1(k∈R)
(Ⅰ)證明:直線l1過定點;
(Ⅱ)若直線l1與直線l2:3x-(k-2)y+2=0平行,求k的值并求此時兩直線間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,我們有$\frac{{{a_1}+{a_2}+{a_3}+{a_4}+{a_5}+{a_6}}}{6}$=$\frac{{{a_3}+{a_4}}}{2}$,則在正項等比數(shù)列{bn}中,我們可以得到類似的結(jié)論是$\root{6}{{{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}}}=\sqrt{{a_3}{a_4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知tanα=2,求:
(1)$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)}$;
(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行15$\sqrt{6}$km后,看見燈塔在正西方向,則這時船與燈塔的距離是( 。
A.15$\sqrt{3}$kmB.30kmC.15kmD.15$\sqrt{2}$km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象上的每一點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移$\frac{π}{6}$個單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC的三個內(nèi)角A、B、C所對的邊的長分別為a、b、c,設(shè)向量$\overrightarrow m$=(a-c,a-b),$\overrightarrow n$=(a+b,c),且$\overrightarrow m$∥$\overrightarrow n$,
(1)求B;
(2)若a=1,b=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案