14.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,則使得f(x)>f(3x-1)成立的x的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$).

分析 根據(jù)函數(shù)的表達(dá)式可知函數(shù)f(x)為偶函數(shù),判斷函數(shù)在x大于零的單調(diào)性為遞增,根據(jù)偶函數(shù)關(guān)于原點(diǎn)對(duì)稱可知,距離原點(diǎn)越遠(yuǎn)的點(diǎn),函數(shù)值越大,可得|x|>|3x-1|,解絕對(duì)值不等式即可.

解答 解:f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,定義域?yàn)镽,
∵f(-x)=f(x),
∴函數(shù)f(x)為偶函數(shù),
當(dāng)x>0時(shí),f(x)=ln(1+x)-$\frac{1}{1+{x}^{2}}$值函數(shù)單調(diào)遞增,
根據(jù)偶函數(shù)性質(zhì)可知:得f(x)>f(3x-1)成立,
∴|x|>|3x-1|,
∴x2>(3x-1)2,
∴x的范圍為($\frac{1}{4}$,$\frac{1}{2}$),
故答案為($\frac{1}{4}$,$\frac{1}{2}$).

點(diǎn)評(píng) 考查了偶函數(shù)的性質(zhì)和利用偶函數(shù)圖象的特點(diǎn)解決實(shí)際問(wèn)題,屬于基礎(chǔ)題型,應(yīng)牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知直線l1:(m+1)x+(m2-2m)y+4=0,l2:2x+(m-2)y-1=0,如果直線l1∥l2,求m的值;
(2)已知直線l1:nx+(2-n)y=3,l2:(n-2)x+(2n+4)y=2,如果這兩條直線相互垂直,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直三棱柱ABC-A1B1C1中,D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn),求證:平面B1FC∥平面EAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,4,5的5張標(biāo)簽,不放回地抽取2張標(biāo)簽,則2張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率為$\frac{2}{5}$(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是減函數(shù),則a的取值范圍是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)(a,b)在圓(x-1)2+(y-1)2=1上,則ab的最大值是$\frac{{3+2\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-1),x>0}\\{-2,x=0}\\{{3}^{x},x<0}\end{array}\right.$,則f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=ax-b的圖象如圖所示,則( 。
A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=asinxcosx-cos2x的圖象過(guò)點(diǎn)$(\frac{π}{8},0)$,
(1)求函數(shù)y=f(x)的單調(diào)減區(qū)間;
(2)求函數(shù)y=f(x)在$[{0,\;\;\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案