直三棱柱ABC-A1B1C1中, AC=BC=AA1=2,∠ACB=90°.E為BB1的中點(diǎn),D點(diǎn)在AB上且DE=.
(Ⅰ)求證:CD⊥平面A1ABB1;
(Ⅱ)求三棱錐A1-CDE的體積.
(1)見(jiàn)解析 (2)三棱錐A1-CDE的體積為1.
【解析】(1)證明線面垂直根據(jù)判斷定理,只需要證明直線垂直這個(gè)平面內(nèi)的兩條相交直線即可.本小題可以證明CD⊥AB, CD⊥AA1即可.
(2)本小題求面積不易直接求,采用整體減去部分的作法求解.本小題可以用求解
(1)在Rt△DBE中,BE=1,DE=,∴BD=== AB,
∴ 則D為AB中點(diǎn), 而AC=BC, ∴CD⊥AB
又∵三棱柱ABC-A1B1C1為直三棱柱, ∴CD⊥AA1
又 AA1∩AB=A 且 AA1、AB Ì 平面A1ABB1
故 CD⊥平面A1ABB1 6分
(2)∵四邊形A1ABB1為矩形,∴△A1AD,△DBE,△EB1A1都是直角三角形,
∴
=2×2-××2-××1-×2×1=
∴ VA1-CDE =VC-A1DE = ×SA1DE ×CD= ××=1
∴ 三棱錐A1-CDE的體積為1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com