6.設f(z)=$\overline{z}$,且z1=1+5i,z2=-3+2i,則f($\overline{{z}_{1}-{z}_{2}}$)的值是4+3i.

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.

解答 解:∵z1-z2=(1+5i)-(-3+2i)=4+3i,
∴$\overline{{z}_{1}-{z}_{2}}$=4-3i.
∵f(z)=$\overline{z}$,
∴f(4-3i)=$\overline{4-3i}$=4+3i.
故答案為:4+3i.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知各項為正的等比數(shù)列{an}中,a4與a14的等比中項為3,則2a7+a11的最小值為(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,其中a>0且a≠1,若f(-1)=f(1),則logab=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.直線y=k(x+2)-1恒過定點A,且點A在直線$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0)上,則2m+n的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知正態(tài)分布密度函數(shù)為f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-μ)}^2}}}{{2{σ^2}}}}}$,x∈R.
(I)判斷f(x)的奇偶性并求出最大值;
正態(tài)分布常用數(shù)據(jù):
P(μ-σ<X≤μ+σ)=0.6826
P(μ-2σ<X≤μ+2σ)=0.9544
P(μ-3σ<X≤μ+3σ)=0.9974
(II)如果X~N(3,1),求P(X<0)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知數(shù)列{an},若a1=2,an+1+an=2n-1,則a2016=( 。
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.一個半徑為R的圓中,60°的圓心角所對的弧長為(  )
A.60RB.$\frac{π}{6}$RC.$\frac{1}{3}$RD.$\frac{π}{3}$R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,一個箱子的每個面都是矩形且邊長都是正整數(shù),若它的對角線PQ=9,則這個箱子的體積最大可能值是112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設a,b是非零實數(shù),若a<b,則下列不等式成立的是( 。
A.a2<b2B.ab2<a2bC.$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$D.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

同步練習冊答案