A. | [6,9] | B. | [3$\sqrt{3}$+3,9) | C. | (6,9] | D. | (3$\sqrt{3}$+3,9] |
分析 由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{3}{sin60°}$=2$\sqrt{3}$,b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC,于是a+b+c=3+2$\sqrt{3}$sinB+2$\sqrt{3}$sin( $\frac{2π}{3}$-B)化簡(jiǎn)整理即可得出.
解答 解:由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{3}{sin60°}$=2$\sqrt{3}$,
∴b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC,
∴a+b+c=3+2$\sqrt{3}$sinB+2$\sqrt{3}$sinC=3+2$\sqrt{3}$sinB+2$\sqrt{3}$sin($\frac{2π}{3}$-B)=3+3$\sqrt{3}$sinB+3cosB=6sin(B+$\frac{π}{6}$)+3,
∵$\frac{π}{6}$<B<$\frac{π}{2}$,
∴$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
∴sin(B+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,1],
∴(a+b+c)∈(3+3$\sqrt{3}$,9].
故選:D.
點(diǎn)評(píng) 本題主要考查正弦定理、誘導(dǎo)公式、兩角和與差的余弦公式等基礎(chǔ)知識(shí),考查了考生運(yùn)算求解的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -$\frac{3}{4}$ | C. | 0 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0≤x<1} | B. | {x|0≤x≤1} | C. | {x|1<x<2} | D. | {x|1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com