求導:f(x)=2x-lnx.
考點:導數(shù)的運算
專題:導數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導數(shù)公式以及運算法則進行求導即可.
解答: 解:函數(shù)的f(x)的導數(shù)f′(x)=2-
1
x
點評:本題主要考查導數(shù)的計算,要求熟練掌握掌握常見函數(shù)的導數(shù)公式,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32
②α,β,γ是三個不同的平面,則“γ⊥α,γ⊥β”是“α∥β”的充分條件
③已知sin(θ-
π
6
)=
1
3
,則cos(
π
3
-2θ)=
7
9

其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

學校體育組新買2個同樣籃球,3個同樣排球,從中取出4個發(fā)放給高一4個班,每班1個,則共有
 
種不同的發(fā)放方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+β)sin(α-β)=
1
3
,則sin2α-sin2β=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項為1,前n項和Sn滿足
Sn
=
Sn-1
+1(n≥2).
(Ⅰ)求Sn與數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
anan+1
(n∈N*),求使不等式b1+b2+…+bn
12
25
成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-2ax+3在區(qū)間(1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市甲、乙兩社區(qū)聯(lián)合舉行迎“五一”文藝匯演,甲、乙兩社區(qū)各有跳舞、笛子演奏、唱歌三個表演項目,其中甲社區(qū)表演隊中表演跳舞的有1人,表演笛子演奏的有2人,表演唱歌的有3人.
(Ⅰ)若從甲、乙社區(qū)各選一個表演項目,求選出的兩個表演項目相同的概率;
(Ⅱ)若從甲社區(qū)表演隊中選2人表演節(jié)目,求至少有一位表演笛子演奏的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx+cosx=-
1
5
(0<x<π),求:
(1)sinx•cosx的值.
(2)求sinx-cos的值.
(3)求sin4x-cos4x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復數(shù)范圍內(nèi),方程z2+|z|=0的根有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案