已知函數(shù)f(x)=
x2+10,x<1
lgx,x≥1
,記f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,則f2014(10)=( 。
A、10B、lg110C、0D、1
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f3n+m(10)=fm(10),m,n∈N*,由此推導(dǎo)出f2014(10)=f1(10)=f(10)=lg10=1.
解答: 解:∵函數(shù)f(x)=
x2+10,x<1
lgx,x≥1
,
∴f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,
∴f1(10)=f(10)=lg10=1,
f2(10)=f(f1(10))=f(1)=lg1=0,
f3(10)=f(f2(10))=f(0)=10,
f4(10)=f(f3(10))=f(10)=lg10=1,
∴f3n+m(10)=fm(10),m,n∈N*,
∵2014=671×3+1,
∴f2014(10)=f1(10)=f(10)=lg10=1.
故答案:D.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意函數(shù)的周期性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把十進(jìn)制數(shù)15化為二進(jìn)制數(shù)為( 。
A、1 011(2)
B、1 001(2)
C、1 111(2)
D、1 101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4x-14y+45=0.
(1)若M是圓C上任意一點(diǎn),點(diǎn)Q(-2,3),求|MQ|的最大值與最小值.
(2)求μ=x-2y的最大值與最小值.
(3)求ν=
y-3
x+2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2x,g(x)=f(x-2)-1,若g(a)<1<f(a),則實(shí)數(shù)a的取值范圍為(  )
A、(-∞,0)∪(3,+∞)
B、(-∞,0)
C、(0,3)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:ax+by=0的距離為2
2
,則直線l的斜率的取值范圍是( 。
A、[2-
3
,1]
B、[2-
3
,2+
3
]
C、[
3
3
3
]
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P--ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E為PB的中點(diǎn).且PD=
2
AB

(1)求證:平面AEC⊥平面PDB;
(2)求AE與平面PDB所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列 {an}中,an>0(n∈N+),a1a3=4,且 a3+1是 a2和 a4的等差中項(xiàng),若bn=log2an+1
(Ⅰ)求數(shù)列 {bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1中AB=1,則A1到面AB1D1的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若 a>b,則下列不等式正確的是( 。
A、a2>b2
B、ab>ac
C、a-c>b-c
D、ac2>bc2

查看答案和解析>>

同步練習(xí)冊(cè)答案