1.已知函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$,若曲線y=g(x)與x軸相切,則a的值為$-\frac{5}{4}$.

分析 求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.

解答 解:函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$,函數(shù)的導(dǎo)數(shù)f′(x)=6x2+2a+1,
∵x軸為函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$的切線,
∴設(shè)過點(diǎn)為(m,0),
則2m3+(2a+1)m+$\frac{1}{2}$=0,①
又f′(m)=6m2+2a+1=0,②
由①②得m=$\frac{1}{2}$,a=-$\frac{5}{4}$,
故答案為:-$\frac{5}{4}$.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義函數(shù)的極值的求法,設(shè)出切點(diǎn)坐標(biāo),求函數(shù)的導(dǎo)數(shù),建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,記S為△ABC的面積,若A=60°,b=1,S=$\frac{3\sqrt{3}}{4}$,則c=3,cosB=$\frac{5\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.兩個(gè)相關(guān)變量滿足如下關(guān)系:
x23456
y25505664
根據(jù)表格已得回歸方程:$\hat y$=9.4x+9.2,表中有一數(shù)據(jù)模糊不清,請(qǐng)推算該數(shù)據(jù)是( 。
A.37.4B.39C.38.5D.40.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=acosx-$\frac{1}{a}$(a>0且a≠1)的圖象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{{8\sqrt{2}}}{3}$D.$\frac{{4\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是一個(gè)簡(jiǎn)單幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.把一張邊長(zhǎng)為6的正三角形的紙片ABC,以它的高AD為折痕,折成一個(gè)直二面角B-AD-C,則BC=$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)是定義在R上的奇函數(shù),對(duì)任意兩個(gè)正數(shù)x1,x2(x1<x2)都有x2f(x1)>x1f(x2),記a=$\frac{1}{2}$f(2),b=f(1),c=-$\frac{1}{3}$f(-3),則a,b,c之間的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2016年備受矚目的二十國集團(tuán)領(lǐng)導(dǎo)人第十一次峰會(huì)于9月4~5日在杭州舉辦,杭州G20籌委會(huì)已經(jīng)招募培訓(xùn)翻譯聯(lián)絡(luò)員1000人、駕駛員2000人,為測(cè)試培訓(xùn)效果,采取分層抽樣的方法從翻譯聯(lián)絡(luò)員、駕駛員中共隨機(jī)抽取60人,對(duì)其做G20峰會(huì)主題及相關(guān)服務(wù)職責(zé)進(jìn)行測(cè)試,將其所得分?jǐn)?shù)(分?jǐn)?shù)都在60~100之間)制成頻率分布直方圖如下圖所示,若得分在90分及其以上(含90分)者,則稱其為“G20通”.

(Ⅰ)能否有90%的把握認(rèn)為“G20通”與所從事工作(翻譯聯(lián)絡(luò)員或駕駛員)有關(guān)?
(Ⅱ)從參加測(cè)試的成績(jī)?cè)?0分以上(含80分)的駕駛員中隨機(jī)抽取4人,4人中“G20通”的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
P(K2≥k00.100.050.0100.001
k02.7063.8416.63510.828
附參考公式與數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案