3.已知數(shù)列{an}的前n項(xiàng)和Sn,a1=2,2Sn=(n+1)an-n2an+1,數(shù)列{bn}滿足b1=1,bnbn+1=λ•2an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得{bn}為等比數(shù)列?并說(shuō)明理由.

分析 (Ⅰ)根據(jù)遞推公式,得到2an=an+1+an-1,繼而得到數(shù)列{an}為等差數(shù)列,求出公差d,即可求出數(shù)列{an}的通項(xiàng)公式,
(Ⅱ)根據(jù)遞推公式,得到bn+2=4bn,求出b2,b3,若{bn}為等比數(shù)列,則滿足(b22=b3•b1,繼而求出正實(shí)數(shù)λ.

解答 解:(Ⅰ)由2Sn=(n+1)2an-n2an+1,得到2Sn-1=n2an-1-(n-1)2an,
∴2an=(n+1)2an-n2an+1-n2an-1+(n-1)2an,
∴2an=an+1+an-1,
∴數(shù)列{an}為等差數(shù)列,
∵2S1=(1+1)2a1-a2
∴4=8-a2,
∴a2=4,
∴d=a2-a1=4-2=2,
∴an=2+2(n-1)=2n,
(Ⅱ)由題設(shè),${b_n}{b_{n+1}}=λ•{2^{a_n}},{b_{n+1}}{b_{n+2}}=λ•{2^{{a_{n+1}}}}$,
兩式相除可得bn+2=4bn,
即{b2n}和{b2n-1}都是以4為公比的等比數(shù)列.
因?yàn)?{b_1}b{\;}_2=λ•{2^{a_1}}=4λ,b{\;}_1=1$,
所以b2=4λ,由b3=4b1=4及${b_2}^2={b_1}{b_3}$,可得4λ2=1,
又λ>0,所以$λ=\frac{1}{2}$.
所以${b_{2n}}=2•{4^{n-1}}={2^{2n-1}},{b_{2n-1}}={2^{2n-2}}$,
即${b_n}={2^{n-1}}$,則bn+1=2bn,
因此存在$λ=\frac{1}{2}$,使得數(shù)列{bn}為等比數(shù)列.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式和等差數(shù)列等比數(shù)列的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對(duì)稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2).則當(dāng)1≤s≤4時(shí),S-2t的最小值為是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中正確的是( 。
A.若命題P:?x0∈R,x02-x0+1<0,則¬P:?x∉R,x2-x+1≥0
B.命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]”的逆否命題為真命題
C.已知相關(guān)變量(x,y)滿足回歸方程$\widehat{y}$=2-3x,若變量x增加一個(gè)單位,則y平均增加3個(gè)單位
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,g(x)=$\frac{k}{{x}^{2}}$(k>0),對(duì)任意p∈(1,+∞),總存在實(shí)數(shù)m,n滿足m<0<n<p,使得f(p)=f(m)=g(n),則整數(shù)k的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,則$\int_0^2$f(x)dx等于( 。
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列能保證a⊥∂(a,b,c為直線,∂為平面)的條件是( 。
A.b,c?∂.a(chǎn)⊥b,a⊥cB.b,c?∂.a(chǎn)∥b,a∥c
C.b,c?∂.b∩c=A,a⊥b,a⊥cD.b,c?∂.b∥c,a⊥b,a⊥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若a為實(shí)數(shù),命題“任意x∈[0,4],x2-2a-8≤0”為真命題的充要條件是( 。
A.a≥8B.a<8C.a≥4D.a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.對(duì)于定義域?yàn)镽的函數(shù)f(x),若存在實(shí)數(shù)x0,使得f(x0)=x0,則稱x0是函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn).若二次函數(shù)f(x)=x2-3x+a存在不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.三棱錐P-ABC中,PA⊥平面ABC,PA=2BC=4$\sqrt{3}$,AB=2,∠BAC=60°,則其外接球的表面積為( 。
A.B.12πC.16πD.64π

查看答案和解析>>

同步練習(xí)冊(cè)答案