A. | 4π | B. | 12π | C. | 16π | D. | 64π |
分析 根據(jù)題意畫出圖形,結合圖形確定PC的中點O為球心,求出球的半徑,利用球的表面積公式,即可求得結論.
解答 解:如圖所示,
∵PA⊥面ABC,BC?面ABC,
∴PA⊥BC;
又AB=2,BC=2$\sqrt{3}$,∠BAC=60°,
∴$\frac{2}{sin∠ACB}$=$\frac{2\sqrt{3}}{sin60°}$,
∴sin∠ACB=$\frac{1}{2}$,
∴∠ACB=30°,
∴∠ABC=90°,
∴AB⊥BC;
又PA∩AB=A,
∴BC⊥面PAB;
又∵PB?面PAB,
∴BC⊥PB;
取PC的中點O,則OP=OA=OB=OC,∴O為球心
∵PA=4$\sqrt{3}$,AC=2AB=4,
∴PC=$\sqrt{{(4\sqrt{3})}^{2}{+4}^{2}}$=8;
∴球半徑為r=$\frac{1}{2}$PC=4;
∴該三棱錐的外接球的表面積為4πr2=4π•42=64π.
故選:D.
點評 本題考查了球的表面積計算問題,解題的關鍵是確定球心與半徑,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com