7.已知定義域為R的奇函數(shù)f(x)的導(dǎo)數(shù)為f′(x),當(dāng)x≠0時,f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(ln2),則下列關(guān)于a,b,c的大小關(guān)系正確的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

分析 利用條件構(gòu)造函數(shù)h(x)=xf(x),然后利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性,利用函數(shù)的單調(diào)性比較大小

解答 解:設(shè)h(x)=xf(x),
∴h′(x)=f(x)+x•f′(x),
∵y=f(x)是定義在實數(shù)集R上的奇函數(shù),
∴h(x)是定義在實數(shù)集R上的偶函數(shù),
當(dāng)x>0時,h'(x)=f(x)+x•f′(x)>0,
∴此時函數(shù)h(x)單調(diào)遞增.
∵a=$\frac{1}{2}$f($\frac{1}{2}$)=h($\frac{1}{2}$),b=-2f(-2)=2f(2)=h(2),c=(ln$\frac{1}{2}$)f(ln2)=-h(ln2),
又2>ln2>$\frac{1}{2}$,
∴b>-c>a.
∴b>a>c.
故選:D.

點評 本題主要考查如何構(gòu)造新的函數(shù),利用單調(diào)性比較大小,是常見的題目.本題屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足${a_1}=\frac{1}{5}$,且當(dāng)n>1,n∈N*時,有$\frac{{{a_{n-1}}}}{a_n}=\frac{{2{a_{n-1}}+1}}{{1-2{a_n}}}$,
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列;
(2)試問a1•a2是否是數(shù)列{an}中的項?如果是,是第幾項;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)復(fù)數(shù)z滿足4z+2$\overline{z}$=3$\sqrt{3}$+i,求復(fù)數(shù)z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a,b,c為實數(shù),且a<b<0,則下列不等式正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.$a+\frac{1}>b+\frac{1}{a}$C.$b+\frac{1}{a}>a+\frac{1}$D.$\frac{a}<\frac{b+1}{a+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),則a1+a2+…a2015=( 。
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.1008$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知非零向量$\overrightarrow{a}$、$\overrightarrow$ 滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|且3$\overrightarrow{a}$2=$\overrightarrow$2,則$\overrightarrow{a}$與$\overrightarrow$-$\overrightarrow{a}$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)當(dāng)a=b=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知公差不為0的等差數(shù)列{an}滿足a1=1,且a1、a2、a4為等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{$\frac{{a}_{n}}{_{n}_{n+1}}$}的前n項和;
(3)數(shù)列{anbn}中是否有三項成等差數(shù)列,若有,請寫出一組;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知:sinθ+cosθ=$\frac{\sqrt{5}}{5}$($\frac{π}{2}$<θ<π),則tanθ=-2.

查看答案和解析>>

同步練習(xí)冊答案