3.已知函數(shù)f(x)=$\frac{1}{2}$x2+m的圖象與函數(shù)g(x)=ln|x|的圖象有四個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,$\frac{1}{2}$).

分析 g(x)=ln|x|的圖象經(jīng)過(guò)點(diǎn)(1,0),數(shù)形結(jié)合可得 f(1)=$\frac{1}{2}$•12+m<0,由此解得m的值.

解答 解:∵函數(shù)f(x)=$\frac{1}{2}$x2+m的圖象(圖中黑色部分)與函數(shù)g(x)=ln|x|的圖象(圖中紅色部分)有四個(gè)交點(diǎn),
再根據(jù)這兩個(gè)函數(shù)都是偶函數(shù),它們的圖象關(guān)于y軸對(duì)稱(chēng),故它們的圖象在(0,+∞)上有兩個(gè)交點(diǎn).
又g(x)=ln|x|的圖象經(jīng)過(guò)點(diǎn)(1,0),數(shù)形結(jié)合可得 f(1)=$\frac{1}{2}$•12+m<0,解得m<$\frac{1}{2}$,
故答案為:(-∞,$\frac{1}{2}$).

點(diǎn)評(píng) 本題考查了根的存在性及根的個(gè)數(shù)判斷,以及函數(shù)與方程的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大。沟眯⊥芤宰疃虝r(shí)間與輪船相遇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=2cos($\frac{π}{4}$x)+4,則f(2)+f(4)+f(6)+…+f(20)=38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=mx-(m+2)lnx-$\frac{2}{x}$,g(x)=x2+mx+1,m∈R.
(1)當(dāng)m<0時(shí),
①求f(x)的單調(diào)區(qū)間;
②若存在x1,x2∈[1,2],使得f(x1)-g(x2)≥1成立,求m的取值范圍;
(2)設(shè)h(x)=$\frac{lnx+1}{{e}^{x}}$的導(dǎo)函數(shù)h′(x),當(dāng)m=1時(shí),求證[g(x)-1]h′(x)<1+e-2(其中e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=alnx-x2,(a∈R)
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)在區(qū)間[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知等腰直角三角形△ABC的斜邊為BC,則向量$\overrightarrow{AB}$與$\overrightarrow{BC}$夾角的大小為135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+x,y=f′(x)為f(x)的導(dǎo)函數(shù),設(shè)h(x)=lnf′(x),若對(duì)于一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.五位同學(xué)排成一排,其中甲、乙必須在一起,而丙、丁不能在一起的排法有24種.

查看答案和解析>>

同步練習(xí)冊(cè)答案