18.已知函數(shù)f(x)=alnx-x2,(a∈R)
(1)當(dāng)a=2時,求函數(shù)y=f(x)在區(qū)間[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的前n項和Sn,若a1=2,S3=12,則a5等于( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線C:y2=4x,A,B是拋物線C上的兩點,且線段AB的中點坐標(biāo)為(2,2),則AB所在直線的方程為(  )
A.x+y-4=0B.x-y=0C.2x-y-2=0D.2x+y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線$\frac{x^2}{16}$-$\frac{y^2}{20}$=1,橢圓C以雙曲線的焦點為頂點、頂點為焦點,橢圓C的左、右頂點分別為A,B,P(${\frac{3}{2}$,$\frac{{5\sqrt{3}}}{2}}$)
(1)求橢圓C的方程;
(2)設(shè)點M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(a>0),且a≠1)
(I)若a=2時,求f(x)的單調(diào)區(qū)間
(2)設(shè)x∈[2,8]時,f(x)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{2}$x2+m的圖象與函數(shù)g(x)=ln|x|的圖象有四個交點,則實數(shù)m的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+$\frac{a}{x}$+(1-a2)lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若y=f(x)在x=1處的切線斜率為1.
①設(shè)g(x)=xf(x)+(t-x)f(t-x)(其中t為正常數(shù)),求函數(shù)g(x)的最小值;
②若m>0,n>0,證明:mf(m)+nf(n)≥(m+n)[f(m+n)-ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x可以在區(qū)間[-t,4t](t>0)上任意取值,則x∈[-$\frac{1}{2}$t,t]的概率是$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{x}{x-1}$在區(qū)間[2,5]上的最大值與最小值的差記為fmax-min,若fmax-min+a2-2a≤0恒成立,則a的取值范圍是(  )
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[1,2]C.[0,1]D.[1,3]

查看答案和解析>>

同步練習(xí)冊答案