【題目】某校從高一年級隨機抽取了名學(xué)生第一學(xué)期的數(shù)學(xué)學(xué)期綜合成績和物理學(xué)期綜合成績.

列表如下:

學(xué)生序號

數(shù)學(xué)學(xué)期綜合成績

物理學(xué)期綜合成績

學(xué)生序號

數(shù)學(xué)學(xué)期綜合成績

物理學(xué)期綜合成績

規(guī)定:綜合成績不低于分者為優(yōu)秀,低于分為不優(yōu)秀.

對優(yōu)秀賦分,對不優(yōu)秀賦分,從名學(xué)生中隨機抽取名學(xué)生,若用表示這名學(xué)生兩科賦分的和,求的分布列和數(shù)學(xué)期望;

根據(jù)這次抽查數(shù)據(jù),列出列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為物理成績與數(shù)學(xué)成績有關(guān)?

附: ,其中

【答案】(1);(2)在犯錯誤的概率不超過的前提下認為物理成績與數(shù)學(xué)成績有關(guān)

【解析】試題分析:(1)可能的取值為.求出概率得到分布列,然后求解期望;(2)列出列聯(lián)表,求出的觀測值,然后推出結(jié)果.

試題解析:(1)可能看的取值為,又 ,故的分布列為

的數(shù)學(xué)期望.

(2)根據(jù)這次抽查數(shù)據(jù)及學(xué)校的規(guī)定,可列出列聯(lián)表如下:

數(shù)學(xué)優(yōu)秀

數(shù)學(xué)不優(yōu)秀

合計

物理優(yōu)秀

物理不優(yōu)秀

合計

假設(shè)物理成績與數(shù)學(xué)成績無關(guān),根據(jù)列聯(lián)表中數(shù)據(jù),得的觀測值,因此,在犯錯誤的概率不超過的前提下認為物理成績與數(shù)學(xué)成績有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為.

(1)求該雙曲線的實軸長、虛軸長、離心率;

(2)若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);

(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關(guān)?

(參考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為,曲線的極坐標方程為,以極點為坐標原點,極軸為的正半軸建立平面直角坐標系.

(1)求的參數(shù)方程;

(2)已知射線,將逆時針旋轉(zhuǎn)得到,且交于兩點, 交于兩點,求取得最大值時點的極坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(2x﹣1).
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)(
A.均為正值
B.均為負值
C.一正一負
D.至少有一個等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O:x2+y2=1和定點A(2,1),由O外一點P(a,b)向O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

(1)求實數(shù)a,b間滿足的等量關(guān)系.

(2)求線段PQ長的最小值.

(3)若以P為圓心所作的P與O有公共點,試求半徑取最小值時P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,已知四邊形為矩形,為平行四邊形,點在平面內(nèi)的射影恰好為點,的中點為的中點為,且.

(1)求證:平面平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.

(Ⅰ)求關(guān)于的函數(shù)解析式;

(Ⅱ)根據(jù)直方圖估計利潤不少于元的概率;

III)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案