【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓(a>b>0)的左、右焦點分別為F1,F2,過點F2的直線交橢圓于M,N兩點.已知橢圓的短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線MN的斜率為時,求的值;
(3)若以MN為直徑的圓與x軸相交的右交點為P(t,0),求實數(shù)t的取值范圍.
【答案】(1)(2)(3).
【解析】
(1)設(shè)焦距2c,由題得到關(guān)于的方程組,解方程組即得解;
(2)先求出點的坐標(biāo),再利用兩點間的距離公式得解;
(3)先討論當(dāng)直線MN斜率不存在時,;再討論直線斜率存在的情況,聯(lián)立直線和橢圓方程得到韋達(dá)定理,再根據(jù)得到,解不等式組綜合即得解.
解:(1)設(shè)焦距2c,,,
故橢圓的標(biāo)準(zhǔn)方程為:;
(2)由(1)知,c=2,則F2(2,0)
或
即,或,
因此,;
(3)當(dāng)直線MN斜率不存在時,MN:x=2,=,
以MN為直徑的圓方程為:,
其與x軸相交的右交點為(,0),即;
當(dāng)MN的斜率存在時,設(shè)MN:,M(,),N(,)
所以,
,,
則,
因為P在以MN為直徑的圓上,則,
所以
所以
所以
所以,
因為,
所以.
∵P是右交點,故t>2,
因此,
解得.
綜合得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面三角形是等邊三角形)中,,分別是的中點.
(1)求證:平面∥平面;
(2)在線段上是否存在一點使平面?若存在,確定點的位置;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某街區(qū)道路示意圖,圖中的實線為道路,每段道路旁的數(shù)字表示單向通過此段道路時會遇見的行人人數(shù),在防控新冠肺炎疫情期間,某人需要從A點由圖中的道路到B點,為避免人員聚集,此人選擇了一條遇見的行人總?cè)藬?shù)最小的從A到B的行走線路,則此人從A到B遇見的行人總?cè)藬?shù)最小值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點到直線的距離為,過點的直線與交于、兩點.
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為,直線的斜率為,若,且與的交點在拋物線上,求直線的斜率和點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】明代商人程大位在公元1592年編撰完成《算法統(tǒng)宗》一書.書中有如下問題:“今有女子善織,初日遲,次日加倍,第三日轉(zhuǎn)速倍增,第四日又倍增,織成絹六丈七尺五寸.問各日織若干?”意思是:“有一位女子善于織布,第一天由于不熟悉有點慢,第二天起每天織的布都是前一天的2倍,已知她前四天共織布6丈7尺5寸,問這位女子每天織布多少?”根據(jù)文中的已知條件,可求得該女了第一天織布________尺,若織布一周(7天),共織________尺.(其中1丈為10尺,1尺為10寸)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過正四面體ABCD的頂點A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有( )
A.6個B.12個C.16個D.18個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com