【題目】已知拋物線的焦點(diǎn)到直線的距離為,過點(diǎn)的直線與交于、兩點(diǎn).
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為,直線的斜率為,若,且與的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).
【答案】(1)(2)直線的斜率為,點(diǎn)的坐標(biāo)為.
【解析】
(1)利用點(diǎn)到直線的距離公式,即可求得,則拋物線方程和準(zhǔn)線方程得解;
(2)聯(lián)立直線與拋物線方程,即可求得經(jīng)過的一點(diǎn),設(shè)出直線的方程,聯(lián)立拋物線方程,利用韋達(dá)定理,結(jié)合,即可容易求得斜率以及點(diǎn)的坐標(biāo).
(1)因?yàn)閽佄锞的焦點(diǎn)為,
直線的一般方程為,
所以,解得.
拋物線的準(zhǔn)線方程為.
(2)聯(lián)立,解得.
設(shè)直線的方程為,將它代入,得.
設(shè),則,,
所以,
解得,又直線過點(diǎn),所以,解得,
所以直線的方程,也即,
所以直線的斜率為,點(diǎn)的坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東京夏季奧運(yùn)會推遲至2021年7月23日至8月8日舉行,此次奧運(yùn)會將設(shè)置4 100米男女混泳接力賽這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個參賽國家派出2男2女共計(jì)4名運(yùn)動員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運(yùn)動員完成,且每名運(yùn)動員都要出場.若中國隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動員名單,其中女運(yùn)動員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動員乙只能承擔(dān)蝶泳或者蛙泳,剩下2名運(yùn)動員四種泳姿都可以承擔(dān),則中國隊(duì)參賽的安排共有( )
A.144種B.8種C.24種D.12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),過點(diǎn)A作x軸的垂線,垂足為點(diǎn),設(shè)直線BE與橢圓的另一交點(diǎn)為P,連接AP得到直線l,交x軸于點(diǎn)M,交y軸于點(diǎn)N.
(1)若,求直線AP的斜率;
(2)記的面積分別為S1,S2,S3,求的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列中前兩項(xiàng)給定,若對于每個正整數(shù),均存在正整數(shù)()使得,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為的等比數(shù)列,當(dāng)時,試問:與是否相等,并說明數(shù)列是否為“數(shù)列”;
(2)討論首項(xiàng)為、公差為的等差數(shù)列是否為“數(shù)列”,并說明理由;
(3)已知數(shù)列為“數(shù)列”,且 ,記,,其中正整數(shù), 對于每個正整數(shù),當(dāng)正整數(shù)分別取1、2、、時的最大值記為、最小值記為. 設(shè),當(dāng)正整數(shù)滿足時,比較與的大小,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓(a>b>0)的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F2的直線交橢圓于M,N兩點(diǎn).已知橢圓的短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線MN的斜率為時,求的值;
(3)若以MN為直徑的圓與x軸相交的右交點(diǎn)為P(t,0),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若函數(shù)在區(qū)間上存在正的極值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形,為中點(diǎn),將至折起,連結(jié).
(1)當(dāng)時,求證:;
(2)當(dāng)時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個同學(xué)的學(xué)號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com