12.tan$\frac{9π}{8}$=$\sqrt{2}$-1.

分析 利用半角公式求得所給式子的值.

解答 解:tan$\frac{9π}{8}$=tan$\frac{π}{8}$=$\frac{1-cos\frac{π}{4}}{sin\frac{π}{4}}$=$\frac{1-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$-1,
故答案為:$\sqrt{2}-1$.

點(diǎn)評(píng) 本題主要考查半角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(-2,1),$\overrightarrow{c}$=(4,-3),用$\overrightarrow{a}$,$\overrightarrow$作為基底表示$\overrightarrow{c}$,則$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖是一個(gè)算法的程序框圖,當(dāng)輸入的x的值為7時(shí),輸出的y值恰好是-1,則“?”處應(yīng)填的關(guān)系式可能是( 。
A.y=2x+1B.y=3-xC.y=|x|D.y=${log_{\frac{1}{3}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線(xiàn)x2=4y在點(diǎn)P(m,n)處的切線(xiàn)與直線(xiàn)2x+y-1=0垂直,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=$\frac{3}{2}$(an-1).
(1)求a1的值,并求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}為等差數(shù)列,且b3+b5=-8,2b1+b4=0,設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.正實(shí)數(shù)x,y滿(mǎn)足:$\frac{1}{x}$+$\frac{1}{y}$=1,則x2+y2-10xy的最小值為-36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a>$\frac{1}{2}$,函數(shù)f(x)=$\frac{1}{6}$x3+$\frac{1}{2}$(a-2)x2+b,g(x)=2alnx,且曲線(xiàn)y=f(x)與曲線(xiàn)y=g(x)在它們的交點(diǎn)(1,c)處的切線(xiàn)互相垂直.
(Ⅰ)求a,b,c的值;
(Ⅱ)設(shè)F(x)=f′(x)-g(x),若對(duì)任意的x1,x2∈(0,4),且x1≠x2,都有F(x1)=F(x2),求證:x1+x2>4.(參考公式:(ln(a-x))′=$\frac{1}{x-a}$,a為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在二項(xiàng)式(${\frac{1}{2}$+2x)n的展開(kāi)式中,前3項(xiàng)的二項(xiàng)式系數(shù)之和等于79,則展開(kāi)式中x4的系數(shù)為$\frac{495}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=2cosx($\sqrt{3}$cosx-3sinx)-$\sqrt{3}$的最小正周期是π.

查看答案和解析>>

同步練習(xí)冊(cè)答案