13.如圖,△ABC的外接圓為⊙O,延長(zhǎng)CB至Q,再延長(zhǎng)QA至P,使得QC2-QA2=BC•QC.
(Ⅰ)求證:QA為⊙O的切線;
(Ⅱ)若AC恰好為∠BAP的平分線,AB=10,AC=15,求QA的長(zhǎng)度.

分析 (Ⅰ)由已知可得QC•QB=QA2,即$\frac{QC}{QA}=\frac{QA}{QB}$,可得△QCA∽△QAB,進(jìn)而∠QAB=QCA,根據(jù)弦切角定理的逆定理可得QA為⊙O的切線;
(Ⅱ)根據(jù)弦切角定理可得AC=BC=15,結(jié)合(I)中結(jié)論,可得QC:QA=AC:AB=15:10,進(jìn)而得到答案.

解答 證明:(Ⅰ)∵QC2-QA2=BC•QC,
∴QC(QC-BC)=QA2,
即QC•QB=QA2,
于是$\frac{QC}{QA}=\frac{QA}{QB}$,
∴△QCA∽△QAB,
∴∠QAB=QCA,
根據(jù)弦切角定理的逆定理可得QA為⊙O的切線,(5分)
解:(Ⅱ)∵QA為⊙O的切線,
∴∠PAC=∠ABC,而AC恰好為∠BAP的平分線,
∴∠BAC=∠ABC,
于是AC=BC=15,
∴QC2-QA2=15QC,①
又由△QCA∽△QAB得
QC:QA=AC:AB=15:10,②
聯(lián)合①②消掉QC,得QA=18.(10分)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是弦切角定理及其逆定理,圓的切線的判定與性質(zhì),三角形相似的判定與性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△OAB中,O為直角坐標(biāo)系的原點(diǎn),A,B的坐標(biāo)分別為A(3,4),B(-2,y),向量$\overrightarrow{AB}$與x軸平行,則向量$\overrightarrow{OA}$與$\overrightarrow{AB}$所成的余弦值是( 。
A.-$\frac{\sqrt{3}}{5}$B.$\frac{\sqrt{3}}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\sqrt{5}$,點(diǎn)P1、P2分別是曲線C的兩條漸近線l1、l2上的兩點(diǎn),△OP1P2(O為坐標(biāo)原點(diǎn))的面積為9,點(diǎn)P是曲線C上的一點(diǎn),且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$.
(1)求此雙曲線的方程;
(2)設(shè)點(diǎn)M是此雙曲線C上的任意一點(diǎn),過點(diǎn)M分別作l1、l2的平行線交l2、l1于A、B兩點(diǎn),試證:平行四邊形OAMB的面積為定值.
(3)若點(diǎn)M是此雙曲線C上不同于實(shí)軸端點(diǎn)的任意一點(diǎn),設(shè)θ=∠F1MF2(F1、F2分別為雙曲線C的左、右焦點(diǎn)),且θ∈[$\frac{π}{4}$,$\frac{π}{3}$],試求|MF1|•|MF2|的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$(ω>0)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為$\frac{π}{12}$.
(1)求ω的值;
(2)若A∈(0,π),且f(A)=$\frac{\sqrt{3}}{2}$,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=$\sqrt{2}$A,E是線段PD上的點(diǎn),F(xiàn)是線段AB上的點(diǎn),且$\frac{PE}{ED}$=$\frac{BF}{FA}$=$\frac{1}{2}$,求直線EF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$f(x)=\left\{\begin{array}{l}{(3-a)x+1\\;x<1}\\{{a}^{x}\\;x≥1}\end{array}\right.$,滿足對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范圍是( 。
A.(1,3)B.(1,2]C.[2,3)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知P是△ABC所在平面外的一點(diǎn),PA、PB、PC兩兩垂直,且P在△ABC所在平面內(nèi)的射影H在△ABC內(nèi),則H一定是△ABC的垂心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0),焦點(diǎn)為F,準(zhǔn)線為l,拋物線C上一點(diǎn)A的橫坐標(biāo)為3,且點(diǎn)A到準(zhǔn)線l的距離為5.
(1)求拋物線C的方程;
(2)若P為拋物線C上的動(dòng)點(diǎn),求線段FP的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列各式:
(1)${[{(-\sqrt{2})^{-2}}]^{-\frac{1}{2}}}=-\sqrt{2}$;
(2)已知loga$\frac{2}{3}$<1,則$a>\frac{2}{3}$;
(3)函數(shù)y=2x的圖象與函數(shù)y=-2-x的圖象關(guān)于原點(diǎn)對(duì)稱;
(4)函數(shù)f(x)=$\frac{1}{{\sqrt{m{x^2}+mx+1}}}$的定義域是R,則m的取值范圍是0<m<4;
(5)函數(shù)y=ln(-x2+x)的遞增區(qū)間為(-∞,$\frac{1}{2}$].
正確的有(3).(把你認(rèn)為正確的序號(hào)全部寫上)

查看答案和解析>>

同步練習(xí)冊(cè)答案