11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}3x-y-2≥0\\ x-2y+1≤0\\ 2x+y-8≤0\end{array}\right.$,則z=3x+y的取值范圍是[4,11].

分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),將z=3x+y的轉(zhuǎn)化為y=-3x+z,結(jié)合圖象求出z的范圍即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由$\left\{\begin{array}{l}{3x-y-2=0}\\{x-2y+1=0}\end{array}\right.$,解得A(1,1),
由$\left\{\begin{array}{l}{x-2y+1=0}\\{2x+y-8=0}\end{array}\right.$,解得B(3,2),
將z=3x+y的轉(zhuǎn)化為y=-3x+z,
結(jié)合圖象得直線過A(1,1)時(shí),z最小,z的最小值是4,
直線過B(3,2)時(shí),z最大,z的最大值是11,
故答案為:[4,11].

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.拋物線y2=4x的動(dòng)點(diǎn)AB的長(zhǎng)為6,則AB的中點(diǎn)M到y(tǒng)軸的最短距離是( 。
A.3B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a、b∈R+,則下列各數(shù)a、b、$\sqrt{ab}$、$\frac{a+b}{2}$、$\frac{2ab}{a+b}$、$\sqrt{\frac{{a}^{2}+^{2}}{2}}$從小到大的順序是a≤$\frac{2ab}{a+b}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+^{2}}{2}}$≤b.
(a≤b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,函數(shù)y=ln(x-1)的定義域?yàn)镸,集合N={x|x2-x<0},則下列結(jié)論正確的是( 。
A.M∩N=NB.M∩(∁UN)=∅C.M∪N=UD.M⊆(∁UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.要得到函數(shù)f (x)=sin2x的導(dǎo)函數(shù) f′(x)的圖象,只需將f (x)的圖象(  )
A.向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)
B.向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的$\frac{1}{2}$倍(橫坐標(biāo)不變)
C.向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的$\frac{1}{2}$倍(橫坐標(biāo)不變)
D.向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司為員工采購(gòu)兩年年終獎(jiǎng)品,要求平板電腦的數(shù)量至多比手機(jī)多5部,預(yù)算經(jīng)費(fèi)12萬,已知手機(jī)4千元一部,平板3千元一部,采購(gòu)的手機(jī)和平板電腦的數(shù)量分別為x,y
(Ⅰ)請(qǐng)列出x,y滿足的數(shù)學(xué)關(guān)系式,并在所給的坐標(biāo)系中畫出相應(yīng)的平面區(qū)域;
(Ⅱ)在上述條件下該公司最多采購(gòu)多少部獎(jiǎng)品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在復(fù)平面內(nèi),復(fù)數(shù)z1與z2對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且z1=-1+i,則$\frac{{z}_{1}}{{z}_{2}}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}是公比為2的等比數(shù)列,且4a1為am,an的等比中項(xiàng),則$\frac{1}{m}+\frac{4}{n}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.把函數(shù)y=3sin2x+$\sqrt{3}$sinxcosx+4cos2x化成y=Asin(ωx+φ)+B的形式,并求出其值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案