19.已知全集U=R,函數(shù)y=ln(x-1)的定義域?yàn)镸,集合N={x|x2-x<0},則下列結(jié)論正確的是( 。
A.M∩N=NB.M∩(∁UN)=∅C.M∪N=UD.M⊆(∁UN)

分析 分別解出關(guān)于M,N的范圍,然后判斷即可.

解答 解:由x-1>0,解得:x>1,
故函數(shù)y=ln(x-1)的定義域?yàn)镸=(1,+∞),
由x2-x<0,解得:0<x<1,
故集合N={x|x2-x<0}=(0,1),
∴∁UN={x|x≥1或x≤0},
∴M⊆(∁UN),
故選:D.

點(diǎn)評 本題考察了集合的包含關(guān)系,考察不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)(x∈R),則下列結(jié)論錯誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對稱
C.函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱D.函數(shù)f(x)在區(qū)間[0,$\frac{5π}{12}$]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$\sqrt{2}sin(θ+{45^0})=5sinθ$,則tanθ等于( 。
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x2-2x|+ax+a.
(1)當(dāng)f(x)有兩個(gè)零點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈R時(shí),求函數(shù)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC中,角A,B,C所對的邊分別是a,b,c,sinA+sinB-4sinC=0,且△ABC的周長L=5,面積S=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2),則cosC=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=2sinωxcos(ωx+\frac{π}{3})$(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{6},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}3x-y-2≥0\\ x-2y+1≤0\\ 2x+y-8≤0\end{array}\right.$,則z=3x+y的取值范圍是[4,11].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)復(fù)數(shù)z滿足(1+2i)•z=3(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin(x+a),x≤0}\\{cos(x+b),x>0}\end{array}\right.$是偶函數(shù),則下列結(jié)論可能成立的是(  )
A.a=$\frac{π}{4}$,b=-$\frac{π}{4}$B.a=$\frac{2π}{3}$,b=$\frac{π}{6}$C.a=$\frac{π}{3}$,b=$\frac{π}{6}$D.a=$\frac{5π}{6}$,b=$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案