【題目】設二次函數(shù)在區(qū)間上的最大值為12,且關于x的不等式的解集為區(qū)間
①求函數(shù)的解析式;
②若對于任意的,不等式恒成立,求實數(shù)m的取值范圍.
【答案】(1);(2)
【解析】
試題(1)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動,不論哪種類型,解題的關鍵是對稱軸與區(qū)間的關系,當含有參數(shù)時,要依據對稱軸與區(qū)間的關系進行分類討論;(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個”二次,它們常結合在一起,有關二次函數(shù)的問題,數(shù)形結合,密切聯(lián)系圖象是探求解題思路的有效方法,一般從:①開口方向;②對稱軸位置;③判別式;④端點值符合四個方面分析;(3)二次函數(shù)的綜合問題應用多涉及單調性與最值或二次方程根的分布問題,解決的主要思路是等價轉化,多用到數(shù)形結合思想與分類討論思想
試題解析:解:(1)依題意可設二次函數(shù)的解析式為f(x)=ax(x-5)且a>0,則
∴f(x)=ax(x-5)=a(x-2.5)2-6.25a
又∵f(x)在[-1,4]上的最大值為12
∴6a="12" a=2
∴
(2)解法一:設t=1-,則0≤t≤2
∴f(2-2cosx)<f(1--m)
2·2t·(2t-5)<2·(t-m)·(t-m-5)
(3t-m-5)(t+m)<0
∴實數(shù)m的取值范圍為
解法二:因為f(x)的對稱軸為且其圖象開口向上
所以f(2-2cosx)<f(1--m)等價于
|2-2cosx-|<|1--m-| 即|2cosx+|<|+m+|
令即|2t-|<|t+m|
∴實數(shù)m的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且.
(1)求角A;
(2)若△ABC外接圓的面積為4π,且△ABC的面積,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求的最大值與最小值.
(2)是否存在過點的直線與橢圓交于不同的兩點,使得?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且,其中為奇函數(shù),為偶函數(shù)。若關于x的方程上在有解,則實數(shù)a的取值范圍是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內至少存在一個值m,使得f(m)>0,則實數(shù)t的取值范圍( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了積極支持雄安新區(qū)建設,某投資公司計劃明年投資1000萬元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計劃,經有關部門測算,若不受中美貿易戰(zhàn)影響的話,每投入100萬元資金,在甲企業(yè)可獲利150萬元,若遭受貿易戰(zhàn)影響的話,則將損失50萬元;同樣的情況,在乙企業(yè)可獲利100萬元,否則將損失20萬元,假設甲、乙兩企業(yè)遭受貿易戰(zhàn)影響的概率分別為0.6和0.5.
(1)若在甲、乙兩企業(yè)分別投資500萬元,求獲利1250萬元的概率;
(2)若在兩企業(yè)的投資額相差不超過300萬元,求該投資公司明年獲利約在什么范圍內?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com