已知f(x)=ax3+bx2-3x+c在x=-1時有極大值6,在x=1時有極小值,求a,b,c的值;并求f(x)在區(qū)間[-2,1]上的最大值和最小值.
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應用
分析:根據(jù)函數(shù)在極值點處的導數(shù)為0,和x=-1時有極大值6這幾個條件很容易求出a,b,c的值,從而求出函數(shù)f(x).求f(x)在區(qū)間[-2,1]上的最大值和最小值,就要看在[-2,1]上f(x)的單調(diào)性如何,有無極值,和端點值做比較,最大的取做最大值,最小的取做最小值.
解答: 解:f′(x)=3ax2+2bx-3;
由題意知:f′(-1)=0,所以3a-2b-3=0   ①
f(-1)=6,所以-a+b+3+c=6             ②
f′(1)=0,所以3a+2b-3=0             ③
由①②③得:a=1,b=0,c=4,所以f(x)=x3-3x+4,f′(x)=3x2-3,令3x2-3=0得:x=±1,所以,x∈[-2,-1)時,f′(x)>0;
x∈(-1,1)時,f′(x)<0,且f(-1)=6,所以x=-1時,函數(shù)f(x)有極大值6,它也是f(x)在[-2,1]上的最大值,
所以f(x)在區(qū)間[-2,1]上的最大值是6;
又f(-2)=2,f(1)=0,所以f(x)在區(qū)間[-2,1]上的最小值是0.
點評:考查極值的概念,及利用導數(shù)求最值的方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,由M到N的電路中有4個元件,分別標為T1,T2,T3,T4,已知每個元件正常工作的概率均為
2
3
,且各元件相互獨立.
(1)求電流能在M與N之間通過的概率;
(2)記隨機變量ξ表示T1,T2,T3,T4這四個元件中正常工作的元件個數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和是Sn,且-1,Sn,an+1成等差數(shù)列(n∈N*),a1=1.
(1)求數(shù)列{an}的通項公式.
(2)若數(shù)列{bn}滿足b1=a1,bn+1=bn+
1
3an
(n≥1)求數(shù)列{bn}的前n項和Tn
(3)函數(shù)f(x)=log3x,設數(shù)列{cn}滿足cn=
1
(n+3)[f(an)+2]
求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內(nèi)角A,B,C所對的邊分別為a,b,c,a=
15
,b=2,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1.
(1)求角A;
(2)求
1+sin2B
cos2B-sin2B
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
6

(1)當-
π
6
≤x≤
π
3
時,求函數(shù)y=f(x)的最大值和最小值及相應的x的值;
(2)若方程f(x)=a在區(qū)間[0,
3
]上只有一個實數(shù)根,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記者在街上隨機統(tǒng)計10位行人在2014年1月份內(nèi)接收到的垃圾短信的條數(shù),將數(shù)據(jù)整理如圖所示的莖葉圖:
(Ⅰ)計算這組數(shù)據(jù)的平均數(shù)及方差;
(Ⅱ)從這10人中隨機抽取2人,記這2人中在這個月內(nèi)接收到的垃圾短信少于10條的人數(shù)為X,求隨機變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項和為Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通項公式;
2)若cn=anbn,{cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的漸近線方程為3x±4y=0,并且經(jīng)過點M(1,3),求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=2+t
y=-1-t
(t為參數(shù)),則直線l被曲線C截得的線段長為
 

查看答案和解析>>

同步練習冊答案