分析 由條件利用柯西不等式求得$\sqrt{a}$+$\sqrt$+$\sqrt{3}$c的最大值.
解答 解:∵a、b、c為正數(shù),a+b+9c2=1,
由柯西不等式可得[$\sqrt{a}$+$\sqrt$+$\sqrt{3}$c]2≤[($\sqrt{a}$)2+($\sqrt$)2+(3c)2]•[12+12+($\frac{\sqrt{3}}{3}$)2]=1×$\frac{7}{3}$=$\frac{7}{3}$,
∴$\sqrt{a}$+$\sqrt$+$\sqrt{3}$c的最大值是$\frac{\sqrt{21}}{3}$.此時(shí),$\frac{\sqrt{a}}{1}$=$\frac{\sqrt}{1}$=$\frac{3c}{\frac{\sqrt{3}}{3}}$ 且a+b+9c2=1,
即 a=b=$\frac{3}{7}$,c=$\frac{\sqrt{7}}{21}$時(shí),取等號(hào),
故答案為:$\frac{\sqrt{21}}{3}$.
點(diǎn)評(píng) 本題考查了柯西不等式的應(yīng)用,考查了變形能力和計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 0 | 1 | 2 | 3 |
P | $\frac{1}{10}$ | $\frac{2}{10}$ | $\frac{3}{10}$ | $\frac{4}{10}$ |
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60種 | B. | 15種 | C. | 30種 | D. | 48種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1011001(2) | B. | 1101001(2) | C. | 1110010(2) | D. | 1011010(2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com