19.在△ABC中,AB⊥AC,AB=$\frac{1}{t}$,AC=t,P是△ABC所在平面內一點,若$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則△PBC面積的最小值為$\frac{3}{2}$.

分析 建立直角坐標系,由向量的坐標運算得出P的坐標,
利用基本不等式求得△PBC面積的最小值.

解答 解:由題意建立如圖所示的坐標系,
可得A(0,0),B($\frac{1}{t}$,0),C(0,t),
∵$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=(4,0)+(0,1)=(4,1),
∴P(4,1);
又|BC|=$\sqrt{{t}^{2}{+(\frac{1}{t})}^{2}}$,BC的方程為tx+$\frac{y}{t}$=1,
∴點P到直線BC的距離為d=$\frac{|4t+\frac{1}{t}-1|}{\sqrt{{t}^{2}{+(\frac{1}{t})}^{2}}}$,
∴△PBC的面積為
S=$\frac{1}{2}$•|BC|•d
=$\frac{1}{2}$•$\sqrt{{t}^{2}{+(\frac{1}{t})}^{2}}$•$\frac{|4t+\frac{1}{t}-1|}{\sqrt{{t}^{2}{+(\frac{1}{t})}^{2}}}$
=$\frac{1}{2}$|4t+$\frac{1}{t}$-1|≥$\frac{1}{2}$•|2$\sqrt{4t•\frac{1}{t}}$-1|=$\frac{3}{2}$,
當且僅當4t=$\frac{1}{t}$,即t=$\frac{1}{2}$時取等號,
∴△PBC面積的最小值為$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題考查了平面向量數(shù)量積的運算以及函數(shù)的最值和基本不等式的運用問題,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在平面直角坐標系xOy中,將不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域繞x軸旋轉一周所形成的幾何體的表面積是( 。
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若等比數(shù)列{an}的前n項和${S_n}={2^{n-1}}+a$,則a3a5=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{cosB}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,則tanα等于(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦點為F,直線x=a與橢圓相交于點M、N,當△FMN的周長最大時,△FMN的面積是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax(a∈R),若f(ln3)=3,則f(ln$\frac{1}{3}$)=( 。
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,若使得目標函數(shù)z=ax+y取最大值的最優(yōu)解有無數(shù)個,則實數(shù)a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.高三學生小李計劃在2017年高考結束后,和其他小伙伴一塊兒進行旅游,有3個自然風光景點A,B,C和3個人文歷史景點a,b,c可供選擇,由于時間和距離原因,只能從中任取4個景點進行參觀,其中景點A不能第一個參觀,且最后參觀的是人文歷史景點,則不同的旅游順序有(  )
A.54種B.72種C.120種D.144種

查看答案和解析>>

同步練習冊答案