17.(1)求值:$\frac{{sin{{330}^0}.sin(-\frac{13}{3}π).sin{{270}^0}}}{{cos(-\frac{19}{6}π).cos{{690}^0}}}$
(2)已知角α終邊上一點P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

分析 (1)利用誘導公式和特殊角的三角函數(shù)值進行化簡;
(2)利用誘導公式對所求的代數(shù)式進行化簡,然后代入求值.

解答 解:(1)原式=$\frac{-sin30°•(-sin\frac{π}{3})•(-sin90°)}{-cos\frac{π}{6}•cos30°}$=$\frac{{(-\frac{1}{2}).(-\frac{{\sqrt{3}}}{2}).(-1)}}{{(-\frac{{\sqrt{3}}}{2}).\frac{{\sqrt{3}}}{2}}}=\frac{{\sqrt{3}}}{3}$;
(2)∵角α終邊上一點P(-4,3),
∴tanα=-$\frac{3}{4}$,
∴$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$
=$\frac{-sinα•sinα}{-sinα•cosα}$
=tanα
=-$\frac{3}{4}$.

點評 本題主要考察了同角三角函數(shù)關(guān)系式和誘導公式的應用,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖為函數(shù)y=m+lognx的圖象,求m,n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知3是函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}(x+t),x≥3\\{3^x},x<3\end{array}\right.$的一個零點,則f[f(6)]的值是( 。
A.4B.3C.2D.log34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.不等式ax2+bx+c<0的解集為空集,則( 。
A.a<0,△>0B.a<0,△≥0C.a>0,△≤0D.a>0,△≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.與雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$共漸近線且過點$(2\sqrt{3},-3)$的雙曲線方程$\frac{y^2}{{\frac{9}{4}}}-\frac{x^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某工廠每日生產(chǎn)某種產(chǎn)品x(x≥1)噸,當日生產(chǎn)的產(chǎn)品當日銷售完畢,產(chǎn)品價格隨產(chǎn)品產(chǎn)量而變化,當1≤x≤20時,每日的銷售額y(單位:萬元)與當日的產(chǎn)量x滿足y=alnx+b,當日產(chǎn)量超過20噸時,銷售額只能保持日產(chǎn)量20噸時的狀況.已知日產(chǎn)量為2噸時銷售額為4.5萬元,日產(chǎn)量為4噸時銷售額為8萬元.
(1)把每日銷售額y表示為日產(chǎn)量x的函數(shù);
(2)若每日的生產(chǎn)成本$c(x)=\frac{1}{2}x+1$(單位:萬元),當日產(chǎn)量為多少噸時,每日的利潤可以達到最大?并求出最大值.(注:計算時取ln2=0.7,ln5=1.6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,則$sin(\frac{2π}{7}+θ)$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=lg[f(x)-1]的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題正確的是( 。
A.若a2>b2,則a>bB.若ac>bc,則a>bC.若$\frac{1}{a}>\frac{1},則a<b$D.若$\sqrt{a}<\sqrt,則a<b$

查看答案和解析>>

同步練習冊答案