6.如圖,已知三棱錐S-ABC中,SA=SB=CA=CB=$\sqrt{3}$,AB=2,SC=$\sqrt{2}$,則二面角S-AB-C的平面角的大小為(  )
A.30°B.45°C.60°D.90°

分析 取AB的中點O,連接SO,CO,由題設(shè)條件推導(dǎo)出AB⊥平面SOC,由此能二面角S-AB-C的平面角是∠SOC.

解答 解:如圖,取AB的中點O,連接SO,CO,由SA=SB=CA=CB可得AB⊥平面SOC,∴二面角S-AB-C的平面角是∠SOC.
在△SOA中,SO=$\sqrt{S{A}^{2}-A{O}^{2}}=\sqrt{2}$,同理CO=$\sqrt{2}$,在△SOC中,SO=CO=SC=$\sqrt{2}$,∴∠SOC=60°,
二面角S-AB-C的平面角的大小為600
故選:C.

點評 本題考查面面角的大小的求法,解題時要認(rèn)真審題,用足已知作出所求的角,合理地化空間問題為平面問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=3sin({\frac{2π}{3}-2x})$的一個單調(diào)遞增區(qū)間是( 。
A.$[{\frac{7π}{12},\frac{13π}{12}}]$B.$[{\frac{π}{12},\frac{7π}{12}}]$C.$[{-\frac{π}{2},\frac{π}{2}}]$D.$[{-\frac{5π}{6},\frac{π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1℃變化到5℃,反應(yīng)結(jié)果如表所示(x表示溫度,y代表結(jié)果):
x12345
y3571011
(1)求化學(xué)反應(yīng)的結(jié)果y對溫度x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并預(yù)測當(dāng)溫度到達(dá)10℃時反應(yīng)結(jié)果為多少?
附:線性回歸方程中$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的定義域:
(1)y=$\frac{x-7}{x+3}$;
(2)y=$\sqrt{2x+1}$;
(3)y=$\sqrt{5x-3}+\frac{{{x^2}-1}}{x-6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)為區(qū)間(-∞,0)∪(0,+∞)上的奇函數(shù),且(0,+∞)為增區(qū)間,若f(-1)=0,則當(dāng)$\frac{f(x)}{x}$<0時,x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,側(cè)棱A1A⊥底面ABC,點E,F(xiàn)分別是棱CC1,BB1上的點,點M是線段AC上的動點,EC=2FB=2.
(1)當(dāng)點M在什么位置時,有BM∥平面AEF,并加以證明.
(2)求四棱錐A-BCEF的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=loga(x-b)的圖象如圖所示,則a-b=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)y=($\frac{1}{2}$)|1-x|+m有兩個零點,則實數(shù)m的取值范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.給定兩個命題:p:對任意實數(shù)x都有mx2+mx+1>0恒成立;q:方程$\frac{x^2}{m-1}+\frac{y^2}{m-2}$=1表示焦點在x軸上的雙曲線,如果p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案