17.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1℃變化到5℃,反應(yīng)結(jié)果如表所示(x表示溫度,y代表結(jié)果):
x12345
y3571011
(1)求化學(xué)反應(yīng)的結(jié)果y對(duì)溫度x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并預(yù)測當(dāng)溫度到達(dá)10℃時(shí)反應(yīng)結(jié)果為多少?
附:線性回歸方程中$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

分析 (1)求出回歸學(xué)生,即可求出線性回歸方程;
(2)$\stackrel{∧}$=2.1>0,x與y之間是正相關(guān),x=10,代入計(jì)算可預(yù)測當(dāng)溫度到達(dá)10℃時(shí)反應(yīng)結(jié)果.

解答 解:(1)由題意,$\overline{x}$=3,$\overline{y}$=7.2,∴$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{129-5×3×7.2}{55-5×9}$=2.1,
$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$=7.2-2.1×3=0.9,
∴$\stackrel{∧}{y}$=2.1x+0.9;
(2)∵$\stackrel{∧}$=2.1>0,∴x與y之間是正相關(guān),
x=10時(shí),$\stackrel{∧}{y}$=2.1×10+0.9=21.9.

點(diǎn)評(píng) 本題考查回歸方程的計(jì)算與運(yùn)用,考查學(xué)生的計(jì)算能力,正確求出回歸方程是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,在邊長為1的正方形f(x)中任取一點(diǎn)f(x),則點(diǎn)[-1,1)恰好取自陰影部分的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系中,橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)P為C1與C2在第一象限的交點(diǎn),且$|P{F_2}|=\frac{5}{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)過F2且與坐標(biāo)軸不垂直的直線交橢圓于M、N兩點(diǎn),若線段OF2上存在定點(diǎn)T(t,0)使得以TM、TN為鄰邊的四邊形是菱形,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系中的單位長度相同.已知點(diǎn)A的極坐標(biāo)為(${\sqrt{2}$,$\frac{π}{4}}$),曲線C在直角坐標(biāo)系下參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t為參數(shù)),曲線C在點(diǎn)A處的切線為l.
(1)求切線l的極坐標(biāo)方程;
(2)已知點(diǎn)P直角坐標(biāo)為(-$\frac{1}{4}$,$\frac{{\sqrt{3}}}{4}$),過點(diǎn)P任作一直線交曲線C于A,B兩點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《數(shù)學(xué)九章》中的“秦九韶算法”求多項(xiàng)式的值.執(zhí)行程序框圖,若輸入a0=1,a1=1,a2=0,a3=-1,則輸出的u的值為(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x),且f(x+2)=f(-x+2),f(4)=1,則不等式f(x)<ex的解集為( 。
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在空間中,下列命題錯(cuò)誤的是( 。
A.過直線外一點(diǎn)有且只有一條直線與已知直線平行
B.不公線的三個(gè)點(diǎn)確定一個(gè)平面
C.如果兩條直線垂直于同一條直線,那么這兩條直線平行
D.如果兩個(gè)平面垂直于同一個(gè)平面,那么這兩個(gè)平面可能互相垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,已知三棱錐S-ABC中,SA=SB=CA=CB=$\sqrt{3}$,AB=2,SC=$\sqrt{2}$,則二面角S-AB-C的平面角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.4cos15°cos75°-sin15°sin75°=( 。
A.0B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案