【題目】求平面直角坐標(biāo)系中格點(diǎn)凸五邊形(即每個(gè)頂點(diǎn)的縱、橫坐標(biāo)都是整數(shù)的凸五邊形)的周長(zhǎng)的最小值。
【答案】
【解析】
設(shè)此凸五邊形的5個(gè)頂點(diǎn)依次為,坐標(biāo)為,并用復(fù)數(shù)表示頂點(diǎn)為虛數(shù)單位。
記,則
1.的實(shí)部與虛部都是整數(shù),且(從而);
2.;
3.凸五邊形的周長(zhǎng)為。
由凸性知,任意兩個(gè)不具有同一方向。由1知,若某個(gè),滿足,則只能是,
中模為1的個(gè)數(shù)至多只有4個(gè):。
1.若中1的個(gè)數(shù)恰為4,由2知,余下一個(gè)為0,與1矛盾。
2.若中1的個(gè)數(shù)恰為3,剩下的兩個(gè)都為(模為的至多只有4個(gè),),則他們不會(huì)滿足2,于是,此時(shí),周長(zhǎng)不小于。
3.若中恰有2個(gè)1,剩下的3個(gè)都為,如圖所示,此時(shí)周長(zhǎng)為。
4.其他情況,周長(zhǎng)不小于。
綜上可知,格點(diǎn)凸五邊形周長(zhǎng)的最小值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}各項(xiàng)均不相同,a1=1,定義,其中n,k∈N*.
(1)若,求;
(2)若bn+1(k)=2bn(k)對(duì)均成立,數(shù)列{an}的前n項(xiàng)和為Sn.
(i)求數(shù)列{an}的通項(xiàng)公式;
(ii)若k,t∈N*,且S1,Sk-S1,St-Sk成等比數(shù)列,求k和t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F是DC上的點(diǎn)且DF=AB,PH為△PAD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合.若的非空子集中奇數(shù)的個(gè)數(shù)大于偶數(shù)的個(gè)數(shù),則稱(chēng)是“好的”.試求的所有“好的”子集的個(gè)數(shù)(答案寫(xiě)成最簡(jiǎn)結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為a,分別是棱、的中點(diǎn),過(guò)點(diǎn)的平面分別與棱、交于點(diǎn),設(shè),,給出以下四個(gè)命題:
(1)平面與平面所成角的最大值為;
(2)四邊形的面積的最小值為;
(3)四棱錐的體積為;
(4)點(diǎn)到平面的距離的最大值為,
其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,,,沿對(duì)角線將折起至,使得二面角為,連結(jié)。
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點(diǎn),且,.
(1)平面;
(2)若為線段上一點(diǎn),且平面,求的值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿波羅尼斯圓.在平面直角坐標(biāo)系中,設(shè)A(﹣3,0),B(3,0),動(dòng)點(diǎn)M滿足=2,則動(dòng)點(diǎn)M的軌跡方程為()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com