【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯誤的是( )

A. B.

C. D.

【答案】C

【解析】對于A,由圖可知, ,可得 ,A正確;對于B, ,所以B正確;對于C, 時, ;C錯誤;對于D, ,D正確.故選C.

【方法點晴】本題通過對多個命題真假的判斷考察數(shù)列的各種性質(zhì)及數(shù)學(xué)化歸思想,屬于難題.該題型往往出現(xiàn)在在填空題最后兩題,綜合性較強,同學(xué)們往往因為某一點知識掌握不牢就導(dǎo)致本題“全盤皆輸”,解答這類問題首先不能慌亂更不能因貪快而審題不清,其次先從最有把握的命題入手,最后集中力量攻堅最不好理解的命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且.設(shè)函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線軸交于不同的兩點,如果為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標志性建筑,某班同學(xué)準備測量觀光塔的高度單位:米),如圖所示,垂直放置的標桿的高度米,已知, .

1)該班同學(xué)測得一組數(shù)據(jù): ,請據(jù)此算出的值;

2該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當調(diào)整標桿到觀光塔的距離單位:米),使的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中, ,其前項和為,滿足,其中.

1)設(shè),證明:數(shù)列是等差數(shù)列;

2)設(shè)為數(shù)列的前項和,求;

3)設(shè)數(shù)列的通項公式為為非零整數(shù)),試確定的值,使得對任意,都有數(shù)列為遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點分別為的橢圓與直線相交于兩點,使得四邊形為面積等于的矩形.

1求橢圓的方程;

2過橢圓上一動點(不在軸上)作圓的兩條切線,切點分別為,直線與橢圓交于兩點, 為坐標原點,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知變量 滿足約束條件 ,若目標函數(shù) 僅在點(5,3)處取得最小值,則實數(shù)的取值范圍為_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)若對任意的實數(shù),函數(shù)為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案