【題目】6名教師分配到3所薄弱學(xué)校去支教,每個學(xué)校至少分配一名教師,甲乙兩人不能去同一所學(xué)校,丙丁兩人必須去同一所學(xué)校,共有________種分配方案(用數(shù)字作答).

【答案】114

【解析】

由題意分三類,可按4、1、1或3、2、1或2、2、2分配,分別計算每一類的分配方法,第一類有(-1)種,第二類+()種,第三類2·,利用分類加法計數(shù)原理即可.

按題目要求可按4、1、1或3、2、1或2、2、2分配,

若按4、1、1分配,丙丁必須在4人里,需要從其余剩下的4人里選2人,有種,去掉選中甲乙的1種情況,有(-1)種選法,安排去3個學(xué)校,共有(-1)=30種;

若按3、2、1分配有兩類,丙丁為2,甲乙中選1人作1,分配到3個學(xué)校有,丙丁在3人組中,從剩余4人中取1人,組成3人組,剩余3人取2人組成2人組,剩余1人構(gòu)成1人組,去掉甲乙構(gòu)成2人組的情況2種,共有種取法,安排去3個學(xué)校有()種,兩類共有+()=72種;

若按2、2、2分配有2·=12種,∴共有30+72+12=114種分配方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對某校的100名學(xué)生進行不記名問卷調(diào)查,內(nèi)容為一周的課外閱讀時長和性別等進行統(tǒng)計,如表:

1)課外閱讀時長在20以下的女生按分層抽樣的方式隨機抽取7人,再從7人中隨機抽取2人,求這2人課外閱讀時長不低于15的概率;

2)將課外閱讀時長為25以上的學(xué)生視為“閱讀愛好”者,25以下的學(xué)生視為“非閱讀愛好”者,根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表:

非閱讀愛好者

閱讀愛好者

總計

女生

男生

總計

能否在犯錯概率不超過0.01的前提下,認為學(xué)生的“閱讀愛好”與性別有關(guān)系?

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.

1)求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

2)若每噸產(chǎn)品平均出廠價為40萬元,那么當(dāng)年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求的解析式;

(2)若恒成立,則稱的一個上界函數(shù),當(dāng)(1)中的為函數(shù)的一個上界函數(shù)時,求的取值范圍;

(3)當(dāng)時,對(1)中的,討論在區(qū)間上極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中, , , ,點是線段上的動點.

(1)當(dāng)點的中點時,求證: 平面;

(2)線段上是否存在點,使得平面平面?若存在,試求出的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論當(dāng)時,函數(shù)的單調(diào)性;

2)當(dāng)對任意的恒成立,其中.的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】體育測試成績分為四個等級:優(yōu)、良、中、不及格.某班50名學(xué)生參加測試結(jié)果如下:

等級

優(yōu)(86100分)

良(7585分)

中(6074分)

不及格(159分)

人數(shù)

5

21

22

2

1)估計該班學(xué)生體育測試的平均成績;

2)從該班任意抽取1名學(xué)生,求這名學(xué)生的測試成績?yōu)椤皟?yōu)”或“良”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為,過點的直線交拋物線于兩點.

(1)為坐標(biāo)原點,求證:;

(2)設(shè)點在線段上運動,原點關(guān)于點的對稱點為,求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù),若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案