【題目】如圖,在五面體中,底面為正方形, ,平面平面, .

(1)求證: ;

(2)若, ,求五面體的體積.

【答案】(1)見解析(2)

【解析】試題分析:

1要證線線垂直,可先證線面垂直,已知有,因此只要再證,這可由面面垂直的性質定理得平面,從而得到結論;

2)這個多面體可分拆為一個三棱錐和一個四棱錐,它們的高易作出,分別求出體積即可.

試題解析:

(Ⅰ)因為平面ABCD平面CDEF,

平面ABCD∩平面CDEFCDADCD,

所以AD⊥平面CDEF,又CF平面CDEF,

ADCF

又因為AECFADAEA,

所以CF⊥平面AEDDE平面AED,

從而有CFDE

(Ⅱ)連接FAFD,過FFMCDM,

因為平面ABCD平面CDEF且交線為CD,FMCD

所以FM⊥平面ABCD

因為CFDE,DC2EF4,CFDE,

所以FMCM1,

所以五面體的體積VVFABCDVADEF

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】兩人約定在20∶00到21∶00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨立的,在20∶00至21∶00各時刻相見的可能性是相等的,則他們兩人在約定時間內相見的概率為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABCa=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某果農(nóng)選取一片山地種植紅柚,收獲時,該果農(nóng)隨機選取果樹20株作為樣本測量它們每一株的果實產(chǎn)量(單位:),獲得的所有數(shù)據(jù)按照區(qū)間,,進行分組,得到頻率分布直方圖如圖。已知樣本中產(chǎn)量在區(qū)間上的果樹株數(shù)是產(chǎn)量在區(qū)間上的果樹株數(shù)的倍。

(1)求的值;

(2)求樣本的平均數(shù)和中位數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C,點x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.

,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;

是否存在定點M,使得不論直線l繞點M如何轉動,恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點,過點作兩條互相垂直的直線,直線于不同的兩點,直線于不同的兩點,記直線的斜率為.

(1)求的取值范圍;

(2)設線段的中點分別為點,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】AB,CD為平面內的四點,且A(1,3),B(2,–2),C(4,1).

(1)若,求D點的坐標;

(2)設向量,,若k+3平行,求實數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個動點到點的距離比到直線的距離多1.

(1)求動點的軌跡的方程;

(2)若過點的直線與曲線交于兩點,且線段中點是點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的定義域;

2)試判斷函數(shù)在區(qū)間上的單調性,并給出證明;

3)若在區(qū)間上恒取正值,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案