【題目】已知拋物線C:,點在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;
是否存在定點M,使得不論直線l繞點M如何轉動,恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.
【答案】(1)見證明;(2)見解析
【解析】
寫出直線AB方程為,與拋物線方程聯(lián)立,利用韋達定理與弦長公式計算值,并求出線段AB的中點到準線的距離,證明該距離等于的一半,即可證明結論成立;設直線AB的方程為,并設點、,列出韋達定理,結合弦長公式得出的表達式,根據(jù)表達式為定值得出m的值,從而可求出定點M的坐標.
當時,且直線l的斜率為1時,直線l的方程為,設點、,
將直線l的方程代入拋物線C的方程,消去y得,,
由韋達定理可得,,
由弦長公式可得,
線段AB的中點的橫坐標為3,所以,線段AB的中點到拋物線準線的距離為4,
因此,以AB為直徑的圓與拋物線C的準線相切;
設直線l的方程為,設點、,
將直線l的方程代入拋物線方程并化簡得,
由韋達定理可得,,
,同理可得,
所以,為定值,
所以,,即時,恒為定值.
此時,定點M的坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓內(nèi)一定點,動圓過點且與圓內(nèi)切.記動圓圓心的軌跡為.
(Ⅰ)求軌跡方程;
(II)過點的動直線l交軌跡于M,N兩點,試問:在坐標平面上是否存在一個定點Q,使得以線段MN為直徑的圓恒過點Q?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018屆河南省南陽市第一中學高三上學期第八次考試】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在中國首都北京舉行,會議期間,達成了多項國際合作協(xié)議.假設甲、乙兩種品牌的同類產(chǎn)品出口某國家的市場銷售量相等,該國質量檢驗部門為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機抽取300個進行測試,結果統(tǒng)計如下圖所示.
(1)估計甲品牌產(chǎn)品壽命小于200小時的概率;
(2)在抽取的這兩種品牌產(chǎn)品中,抽取壽命超過300小時的產(chǎn)品3個,設隨機變量表示抽取的產(chǎn)品是甲品牌的產(chǎn)品個數(shù),求的分布列和數(shù)學期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力,某移動支付公司在我市隨機抽取了100名移動支付用戶進行調查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認為每周使用移動支付超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認為是否“喜歡使用移動支付”與性別有關?
(2)每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶,
①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;
②為了鼓勵女性用戶使用移動支付,對抽出的女“移動支付達人”每人獎勵500元,記獎勵總金額為,求的數(shù)學期望.
附表及公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大慶實驗中學在高二年級舉辦線上數(shù)學知識競賽,在已報名的400名學生中,根據(jù)文理學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學成績的中位數(shù)和眾數(shù);
(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分數(shù)不小于70,且樣本中分數(shù)不小于70的文理科生人數(shù)相等.試估計總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定長為3的線段兩端點、分別在軸,軸上滑動,在線段上,且.
(1)求點的軌跡的方程;
(2)設點是軌跡上一點,從原點向圓作兩條切線分別與軌跡交于點,,直線,的斜率分別記為,.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com