【題目】若函數(shù)滿足存在正數(shù),使得對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在,使成立,則稱該函數(shù)為依附函數(shù)

1)分別判斷函數(shù)①,②是否為依附函數(shù),并說明理由;

2)若函數(shù)的值域為,求證:依附函數(shù)’”的充要條件是

【答案】1)①是,②不是;理由詳見解析(2)詳見解析.

【解析】

1)①可取,說明函數(shù)依附函數(shù); ②對于任意正數(shù),取,此時關(guān)于的方程無解,說明不是依附函數(shù);

(2)先證明必要性,再證明充分性,即得證.

1)①可取,則對任意,存在,使得成立,

(說明:可取任意正數(shù),則

依附函數(shù)

②對于任意正數(shù),取,則,

此時關(guān)于的方程無解,∴不是依附函數(shù)

2)必要性:(反證法)假設(shè),

的值域為,∴存在定義域內(nèi)的,使得,

∴對任意正數(shù),關(guān)于的方程無解,

不是依附函數(shù),矛盾,

充分性:假設(shè),取

則對定義域內(nèi)的每一個值,由,可得,

的值域為,

∴存在定義域內(nèi)的,使得,即成立,

依附函數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,第一次檢測廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進(jìn)行技術(shù)處理,處理后進(jìn)行第二次檢測.每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當(dāng)廢品回收.

求某件產(chǎn)品能出廠的概率;

若該產(chǎn)品的生產(chǎn)成本為/件,出廠價格為/件,每次檢測費為/件,技術(shù)處理每次/件,回收獲利/.假如每件產(chǎn)品是否合格相互獨立,記為任意一件產(chǎn)品所獲得的利潤,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】桂林漓江主要景點有象鼻山、伏波山、疊彩山、蘆笛巖、七星巖、九馬畫山,小張一家人隨機(jī)從這6個景點中選取2個進(jìn)行游玩,則小張一家人不去七星巖和疊彩山的概率為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科院為試驗冬季晝夜溫差對反季節(jié)大豆新品種發(fā)芽的影響,對溫差與發(fā)芽率之間的關(guān)系進(jìn)行統(tǒng)計分析研究,記錄了6天晝夜溫差與實驗室中種子發(fā)芽數(shù)的數(shù)據(jù)如下:

日期

11

12

13

14

15

16

溫差(攝氏度)

10

11

12

13

8

9

發(fā)芽數(shù)(粒)

26

27

30

32

21

24

他們確定的方案是先從這6組數(shù)據(jù)中選出2組,用剩下的4組數(shù)據(jù)求回歸方程,再用選取的兩組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

2)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差不超過1粒,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)12,34,5日的數(shù)據(jù)求出關(guān)于的線性回歸方程(保留兩位小數(shù)),并檢驗此方程是否可靠.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,均為以為直角頂點的等腰直角三角形,,,的中點.

1)求證:

2)求二面角的大;

3)設(shè)為線段上的動點,使得平面平面,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是給定的平面,設(shè)不在內(nèi)的任意兩點M,N所在的直線為l,則下列命題正確的是(

A.內(nèi)存在直線與直線l異面

B.內(nèi)存在直線與直線l相交

C.內(nèi)存在直線與直線l平行

D.存在過直線l的平面與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為提高市場銷售業(yè)績,促進(jìn)某產(chǎn)品的銷售,隨機(jī)調(diào)查了該產(chǎn)品的月銷售單價(單位:元/件)及相應(yīng)月銷量(單位:萬件),對近5個月的月銷售單價和月銷售量的數(shù)據(jù)進(jìn)行了統(tǒng)計,得到如下表數(shù)據(jù):

月銷售單價(元/件)

9

10

11

月銷售量(萬件)

11

10

8

6

5

(Ⅰ)建立關(guān)于的回歸直線方程;

(Ⅱ)該公司開展促銷活動,當(dāng)該產(chǎn)品月銷售單價為7/件時,其月銷售量達(dá)到18萬件,若由回歸直線方程得到的預(yù)測數(shù)據(jù)與此次促銷活動的實際數(shù)據(jù)之差的絕對值不超過萬件,則認(rèn)為所得到的回歸直線方程是理想的,試問:(Ⅰ)中得到的回歸直線方程是否理想?

(Ⅲ)根據(jù)(Ⅰ)的結(jié)果,若該產(chǎn)品成本是5/件,月銷售單價為何值時(銷售單價不超過11/件),公司月利潤的預(yù)計值最大?

參考公式:回歸直線方程,其中,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢測生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機(jī)抽取100個零件,測量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認(rèn)為該零件合格,否則認(rèn)為不合格.其中,分別表示樣本的平均值和標(biāo)準(zhǔn)差,計算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

1)已知一個零件的尺寸是,試判斷該零件是否合格;

2)利用分層抽樣的方法從尺寸在的樣本中抽取6個零件,再從這6個零件中隨機(jī)抽取2個,求這2個零件中恰有1個尺寸小于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點與定點的距離和該動點到直線的距離的比是常數(shù)

1)求動點軌跡方程

2)已知點,問在軸上是否存在一點,使得過點的任一條斜率不為0的弦交曲線兩點,都有

查看答案和解析>>

同步練習(xí)冊答案