【題目】已知函數f(x)是奇函數,g(x)是偶函數,且在公共定義域{x|x∈R且x≠±1}上滿足f(x)+g(x)= .
(1)求f(x)和g(x)的解析式;
(2)設h(x)=f(x)﹣g(x),求h( );
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( ).
【答案】
(1)解:由題意,f(x)+g(x)= ,①
f(﹣x)+g(﹣x)= ,即﹣f(x)+g(x)=﹣ ,②
由①②聯立解得f(x)= ,g(x)=
(2)解:h(x)=f(x)﹣g(x)═ = ,
∴h( )= =
(3)解:∵h(x)+h( )= =1,
∴h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( )
=[h(2)+h( )]+[h(3)+h( )]+…+h(2016)+h( )]
=2015
【解析】(1)由f(x)+g(x)= ,得﹣f(x)+g(x)=﹣ ,聯立方程組能求出f(x),g(x).(2)由h(x)=f(x)﹣g(x)═ = ,能求出h( ).(3)由h(x)+h( )= =1,能求出h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( )的值.
【考點精析】利用函數奇偶性的性質和函數的值對題目進行判斷即可得到答案,需要熟知在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇;函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.
科目:高中數學 來源: 題型:
【題目】甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元
(1)設甲乙快遞公司的“快遞小哥”一日工資(單位:元)與送貨單數的函數關系式為,求;
(2)假設同一公司的“快遞小哥”一日送貨單數相同,現從兩家公司各隨機抽取一名“快遞小哥”,并記錄其天的送貨單數,得到如下條形圖:
若將頻率視為概率,回答下列問題:
①記乙快遞公司的“快遞小哥”日工資為(單位:元),求的分布列和數學期望;
②小趙擬到兩家公司中的一家應聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請你利用所學的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費推出一項優(yōu)惠活動,活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時,重新轉一次)指針所在的區(qū)域及對應的返劵金額見表.
例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費后獲得n次轉動轉盤的機會,已知他每轉一次轉盤指針落在區(qū)域邊界的概率為p,每次轉動轉盤的結果相互獨立,設ξ為顧客甲轉動轉盤指針落在區(qū)域邊界的次數,ξ的數學期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顧客乙消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為η(元).求隨機變量η的分布列和數學期望.
指針位置 | A區(qū)域 | B區(qū)域 | C區(qū)域 |
返券金額(單位:元) | 60 | 30 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有能力互異的3人應聘同一公司,他們按照報名順序依次接受面試,經理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強,就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是減函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為(為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線在平面直角坐標系下的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com