A. | $\frac{{\sqrt{6}}}{2}$ | B. | $-\frac{{\sqrt{6}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
分析 利用兩角和差的余弦公式求得cos2θ的值,再利用同角三角函數(shù)的基本關(guān)系求得sin2θ的值,從而求得sinθ+cosθ=-$\sqrt{{(sinθ+cosθ)}^{2}}$的值.
解答 解:∵已知$cos(θ+\frac{π}{4})•cos(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{4},θ∈(\frac{3π}{4},π)$,∴($\frac{\sqrt{2}}{2}$cos$θ\\;-$-$\frac{\sqrt{2}}{2}$sinθ)•($\frac{\sqrt{2}}{2}$cos$θ\\;-$+$\frac{\sqrt{2}}{2}$sinθ)=$\frac{1}{2}$cos2θ=$\frac{\sqrt{3}}{4}$,
∴cos2θ=$\frac{\sqrt{3}}{2}$,∴sin2θ=-$\sqrt{{1-cos}^{2}2θ}$=-$\frac{1}{2}$,
∴sinθ+cosθ=-$\sqrt{{(sinθ+cosθ)}^{2}}$=-$\sqrt{1+sin2θ}$=-$\frac{\sqrt{2}}{2}$,
故選:C.
點評 本題主要考查兩角和差的余弦公式、同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P(ξ=0) | B. | P(ξ≤2) | C. | P(ξ=1) | D. | P(ξ=2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$i | D. | -$\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com