已知點P(lga,lgb)關(guān)于x軸的對稱點為(0,-1),則正數(shù)a、b的值分別為
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得點P坐標(biāo)為(0,1),即lga=0,lgb=1,由此能求出正數(shù)a,b的值.
解答: 解:點P(lga,lgb)關(guān)于x軸的對稱點為(0,-1),
∴點P坐標(biāo)為(0,1),
即lga=0,lgb=1,
解得:a=1,b=10.
故答案為:1,10.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,過點F1且斜率為k的直線與雙曲線的右支交于點M,若點M在x軸上的射影恰好是右焦點F2,且
3
4
<k<
4
3
,則雙曲線離心率e的取值范圍是( 。
A、(1,2)
B、(1,3)
C、(3,+∞)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用三種不同的顏色,將如圖所示的4個區(qū)域涂色,每種顏色至少用1次,則相鄰的區(qū)域不涂同一種顏色的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=3+3cosθ
y=3sinθ
(θ是參數(shù)),以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為θ=
π
4
(ρ∈R),曲線C與直線l相交于點A、B.
(Ⅰ) 將曲線C的方程化為普通方程,直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ) 求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸出s=3,那么判斷框內(nèi)應(yīng)填入的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinπx+cosπx對任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x2-x1|的最小值為( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班關(guān)注NBA是否與性別有關(guān),對本班 48人進行了問卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA不關(guān)注NBA合   計
男    生6
女    生10
合    計48
已知在全班48人中隨機抽取1人,抽到關(guān)注NBA的學(xué)生的概率為
2
3

(1)請將上面列連表補充完整(不用寫計算過程);
(2)判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說明你的理由.
下列的臨界值表,供參考
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
)其中 n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

21+
1
2
log25
=( 。
A、2+
5
B、2
5
C、2+
5
2
D、1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式mx2-10x+2m2≤0的解集為A=[1,a],集合B={x|log2(x2-x)>1}.
(Ⅰ)求實數(shù)m,a的值;
(Ⅱ)求A∩B,(∁RA)∪B.

查看答案和解析>>

同步練習(xí)冊答案