6.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2a3h1h2,其中h0=a0⊕a1,h1=h0⊕a2,h2=h1⊕h0,⊕為運(yùn)算規(guī)則為:0⊕0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為011111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是( 。
A.110101B.000111C.101110D.011000

分析 根據(jù)題意,只需驗(yàn)證是否滿足h0=a0⊕a1,h1=h0⊕a2,h2=h1⊕h0.經(jīng)驗(yàn)證,(1),(2),(4)都符合,即可得解.

解答 解:(1)選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,h2=h1⊕h0=0⊕1=1,
所以傳輸信息為110101,(1)選項(xiàng)正確;
(2)選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,h2=h1⊕h0=1⊕0=1,
所以傳輸信息為000111,(2)選項(xiàng)正確;
(3)選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,h2=h1⊕h0=0⊕1=1,
所以傳輸信息為101101,(3)選項(xiàng)錯(cuò)誤;
(4)選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,h2=h1⊕h0=0⊕0=0,
所以傳輸信息為011000,(4)選項(xiàng)正確;
故選:C.

點(diǎn)評(píng) 本題是一道找規(guī)律的題目,要求學(xué)生通過(guò)觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題.此題注意正確理解題意,根據(jù)要求進(jìn)行計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式x2≥2x的解集是(-∞,0]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,$\frac{{a}^{3}{+b}^{3}{-c}^{3}}{a+b-c}$=c2,sinA•sinB=$\frac{3}{4}$,則△ABC一定是( 。
A.等邊三角形B.等腰三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=min{2$\sqrt{x}$,|x-2|},其中min|a,b|=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$.若函數(shù)y=f(x)-m有三個(gè)不同的零點(diǎn)x1,x2,x3,則x1+x2+x3的取值范圍是( 。
A.(2,6-2$\sqrt{3}$)B.(2,$\sqrt{3}$+1)C.(4,8-2$\sqrt{3}$)D.(0,4-2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知{an}、{bn}都是各項(xiàng)均為正數(shù)且公差不為0的等差數(shù)列,滿足anbn+1+an+1bn=2nan+1(n∈N*).
(1)求證:數(shù)列{an}有無(wú)窮多個(gè),而數(shù)列{bn}惟一確定;
(2)設(shè)an+1=$\frac{{2{a_n}^2+{a_n}}}{{{a_n}+1}}(n∈{N^*})$,sn=b1+b2+b3+…+b2n-1+b2n,求證:2<$\frac{S_n}{n^2}$<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.記函數(shù)f(x)=1+$\frac{cosx}{1+sinx}$的所有正的零點(diǎn)從小到大依次為x1,x2,x3,…,若θ=x1+x2+x3+…x2015,則cosθ的值是(  )
A.-1B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖1是一個(gè)邊長(zhǎng)為1的正三角形,分別連接這個(gè)三角形三邊中點(diǎn),將在三角剖分成4個(gè)三角開(kāi)(如圖2),再分別連接圖2中一個(gè)小三角形三邊的中點(diǎn),又可將原三角形剖分成7個(gè)三角形(如圖3),…,依此類推,設(shè)第n個(gè)圖中原三角形被剖分成an個(gè)三角形,則第4個(gè)圖中最小三角形的邊長(zhǎng)為(  );a100=( 。
A.$\frac{1}{6}$,300B.$\frac{1}{8}$,300C.$\frac{1}{6}$,298D.$\frac{1}{8}$,298

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.二項(xiàng)式${(\root{3}{x}-\frac{3}{x})^n}$的展開(kāi)式中含有x2項(xiàng),則n最小時(shí),展開(kāi)式中所有系數(shù)之和為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=12,且2a1,a2,a3+1成等比數(shù)列.
(1)求{an}的通項(xiàng)公式an和Sn; 
(2)記bn=$\frac{a_n}{2^n}$的前n項(xiàng)和Tn,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案