已知函數(shù)f(x)=
1
3
|x|,判斷并證明f(x)的奇偶性.
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,判斷是否關(guān)于原點對稱,再化簡f(-x)判斷與f(x)的關(guān)系,最后根據(jù)函數(shù)的奇偶性下結(jié)論.
解答: 解:函數(shù)f(x)是偶函數(shù),
證明如下:f(x)=
1
3
|x|的定義域是R,
且f(-x)=
1
3
|-x|=
1
3
|x|=f(x),
所以函數(shù)f(x)是偶函數(shù).
點評:本題考查了函數(shù)的奇偶性的證明,需要先求定義域再判斷f(-x)與f(x)的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x-y-1≤0
x+y-2≥0
x>0
,求:
(1)z=x2+y2的最小值;
(2)u=
y
x
的取值范圍;
(3)u=|2x+y+1|的最小值;
(4)m=x-y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a-1)
3-ax
在(0,1]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為A,當(dāng)年產(chǎn)量不足80千件時,C(x)=
1
3
x2+10x
(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+
10000
x
-1450
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正實數(shù),若函數(shù)f(x)=ax3+bx+ab-1是奇函數(shù),則f(2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求焦點在坐標(biāo)軸上,焦距為2
2
,且經(jīng)過點(-
10
5
3
5
5
)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2(a-2)x+5.
(1)若函數(shù)f(x)在(4,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;  
(2)若f(-1)=8,求函數(shù)f(x)在[0,3]上的最值,并寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα+2sinα=0,其中
π
2
<α<π.
(Ⅰ)求
sinα-2cosα
2sinα-cosα
的值;
(Ⅱ)若sinβ=
3
5
,
π
2
<β<π,求cos﹙α+β﹚的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-x2+9與x軸交于兩點A,B,點C,D在拋物線上(點C在第一象限),CD∥AB.記|CD|=2x,梯形ABCD面積為S.
(1)求面積S以x為自變量的函數(shù)式;
(2)若
|CD|
|AB|
=k其中k為常數(shù),且0<k<1,求S的最大值.

查看答案和解析>>

同步練習(xí)冊答案