16.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸進(jìn)線與直線x-y+3=0平行,則此雙曲線的離心率為$\sqrt{2}$.

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程分析可得其漸近線方程為y=±$\frac{a}$x,結(jié)合題意分析可得$\frac{a}$=1,又由雙曲線的幾何性質(zhì)可得c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$c,由雙曲線的離心率計算公式計算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,
其焦點(diǎn)在x軸上,則其漸近線方程為y=±$\frac{a}$x,
又由其一條漸進(jìn)線與直線x-y+3=0平行,則有$\frac{a}$=1,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
則該雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{2}$;
故答案為:$\sqrt{2}$.

點(diǎn)評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是掌握雙曲線的漸近線的特點(diǎn)并求出其漸近線的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={x∈Z|x(x-3)≤0},N={x|lnx<1},則M∩N=( 。
A.{1,2}B.{2,3}C.{0,1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn)B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且
α∈[$\frac{π}{6}$,$\frac{π}{4}$],則該橢圓離心率e的取值范圍為( 。
A.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,$\sqrt{3}$-1]D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式|x-3|-|x+1|≤a2-3a對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]∪[4,+∞)B.[-1,4]C.[-4,1]D.(-∞,-4]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知P為曲線${C_1}:\frac{x^2}{12}+\frac{y^2}{4}=1$上的動點(diǎn),直線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}-\frac{1}{2}t}\end{array}}\right.$(t為參數(shù))求點(diǎn)P到直線C2距離的最大值,并求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)求不等式f(x)≥3的解集M;
(2)若a∈M,求證:|x+a|+|x-$\frac{1}{a}$|≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線右支上一點(diǎn),滿足$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,且3|$\overrightarrow{{PF}_{1}}$|=4|$\overrightarrow{{PF}_{2}}$|,則雙曲線的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1的實(shí)軸長為10,則該雙曲線的漸近線的斜率為( 。
A.$±\frac{5}{4}$B.$±\frac{4}{5}$C.$±\frac{5}{3}$D.$±\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若logab、logac是方程x2-x-3=0的兩根,那么a、b、c之間的關(guān)系是a=bc.

查看答案和解析>>

同步練習(xí)冊答案