6.方程$({1-x})sinπx=\frac{1}{2}({-2≤x≤4})$的所有解之和等于( 。
A.0B.4C.8D.6

分析 由方程可得sinπx=$\frac{1}{2(1-x)}$,作出函數(shù)圖象可得解的個數(shù),根據(jù)圖象的對稱關系即可得出答案.

解答 解:顯然x=1不是方程的解.
由(1-x)sinπx=$\frac{1}{2}$得sinπx=$\frac{1}{2(1-x)}$,
作出y=sinπx與y=$\frac{1}{2(1-x)}$的函數(shù)圖象,

由圖象可知兩函數(shù)圖象在[-2,4]上有8個交點,
∵y=sinπx與y=$\frac{1}{2(1-x)}$的函數(shù)圖象均關于點(1,0)對稱,
∴方程$({1-x})sinπx=\frac{1}{2}({-2≤x≤4})$的解的和為4×2=8.
故選C.

點評 本題考查了方程的根與函數(shù)圖象的關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|x2-4x<0},B={x|x<a},若A⊆B,則實數(shù)a的取值范圍是(  )
A.(0,4]B.(-∞,4)C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在正三角形ABC的底邊BC上取中點M,在與底邊BC相鄰的兩條邊BA和CA上分別取點P、Q,若線段PQ對M的張角∠PMQ為銳角,則稱點P、Q親密.若點P、Q在BA、CA上的位置隨機均勻分布,則P、Q親密的概率稱為正三角形的親密度.則正三角形的親密度為$\frac{6-3ln3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=x2,則$\lim_{△x→0}\frac{{f({△x})-f(0)}}{△x}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,若輸入t的值為6,則輸出的s的值為( 。
A.$\frac{9}{16}$B.$\frac{5}{4}$C.$\frac{21}{16}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x-2,x∈R,求:
(1)函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)函數(shù)f(x)在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3,4五個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,4]任取的一個數(shù),b是從區(qū)間[1,4]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn,a1+a2=2,a5+a6=8,則S10=( 。
A.16B.32C.40D.62

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直線ax-by-2=0與曲線y=x3+x在點P(1,2)處的切線互相垂直,則$\frac{a}$的值為(  )
A.$-\frac{1}{4}$B.-4C.3D.$-\frac{1}{3}$

查看答案和解析>>

同步練習冊答案