19.已知函數(shù)f(x)=lnx-2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x-y=0平行的切線,求實(shí)數(shù)a的取值范圍;
(2)已知a>1設(shè)g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有極大值點(diǎn)x1,求證:x1lnx1-ax12+1>0.

分析 (1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為2+2a=$\frac{1}{x}$在(0,+∞)上有解,求出a的范圍即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,問題轉(zhuǎn)化為證明x1lnx1+1>a${{x}_{1}}^{2}$,令h(x)=-$\frac{{x}^{3}}{2}$-$\frac{1}{2}$x+xlnx+1,x∈(0,1),根據(jù)函數(shù)的單調(diào)性證明即可.

解答 (1)解:因?yàn)閒′(x)=$\frac{1}{x}$-2a,x>0,
因?yàn)楹瘮?shù)y=f(x)存在與直線2x-y=0平行的切線,
所以f′(x)=2在(0,+∞上有解,
即$\frac{1}{x}$-2a=2在(0,+∞)上有解,也即2+2a=$\frac{1}{x}$在(0,+∞)上有解,
所以2+2a>0,得a>-1,
故所求實(shí)數(shù)a的取值范圍是(-1,+∞);
(2)證明:因?yàn)間(x)=$\frac{1}{2}$x2+lnx-2ax,
因?yàn)間′(x)=$\frac{{x}^{2}-2ax+1}{x}$,
①當(dāng)-1≤a≤1時(shí),g(x)單調(diào)遞增無(wú)極值點(diǎn),不符合題意,
②當(dāng)a>1或a<-1時(shí),令g′(x)=0,設(shè)x2-2ax+1=0的兩根為x1和x2,
因?yàn)閤1為函數(shù)g(x)的極大值點(diǎn),所以0<x1<x2
又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,
所以g′(x1)=${{x}_{1}}^{2}$-2ax1+$\frac{1}{{x}_{1}}$=0,則a=$\frac{{{x}_{1}}^{2}+1}{{2x}_{1}}$,
要證明$\frac{l{nx}_{1}}{{x}_{1}}$+$\frac{1}{{{x}_{1}}^{2}}$>a,只需要證明x1lnx1+1>a${{x}_{1}}^{2}$,
因?yàn)閤1lnx1+1-a${{x}_{1}}^{2}$=x1lnx1-$\frac{{{x}_{1}}^{3}{+x}_{1}}{2}$+1=-$\frac{{{x}_{1}}^{3}}{2}$-$\frac{1}{2}$x1+x1lnx1+1,0<x1<1,
令h(x)=-$\frac{{x}^{3}}{2}$-$\frac{1}{2}$x+xlnx+1,x∈(0,1),
所以h′(x)=-$\frac{{3x}^{2}}{2}$-$\frac{1}{2}$+lnx,記p(x)=-$\frac{{3x}^{2}}{2}$-$\frac{1}{2}$+lnx,x∈(0,1),
則p′(x)=-3x+$\frac{1}{x}$=$\frac{1-{3x}^{2}}{x}$,
當(dāng)0<x<$\frac{\sqrt{3}}{3}$時(shí),p′(x)>0,當(dāng)$\frac{\sqrt{3}}{3}$<x<1時(shí),p′(x)<0,
所以p(x)max=p($\frac{\sqrt{3}}{3}$)=-1+ln$\frac{\sqrt{3}}{3}$<0,所以h′(x)<0,
所以h(x)在(0,1)上單調(diào)遞減,所以h(x)>h(1)=0,原題得證.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,考查分類討論思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a10+a9=6a8,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}=4{a_1}$,則$\frac{2}{m}+\frac{1}{n}$的最大值為(  )
A.$\frac{1}{2}+\frac{\sqrt{2}}{3}$B.$\frac{11}{5}$C.$\frac{9}{10}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)t∈R,已知p:函數(shù)f(x)=x2-tx+1有零點(diǎn),q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q為真命題,求t的取值范圍;
(Ⅱ)若p∨q為假命題,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知變量x,y線性負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是( 。
A.y=0.4x+2.4B.y=2x+2.4C.y=-2x+9.5D.y=-0.3x+4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在四面體S-ABC中,SA⊥平面ABC,∠ABC=90°,SA=AC=2,AB=1,則該四面體的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線與圓x2+y2-4y+3=0相切,則該雙曲線C的離心率為(  )
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a2+b2+c2=ac+bc+ca.
(1)證明:△ABC是正三角形;
(2)如圖,點(diǎn)D的邊BC的延長(zhǎng)線上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f′(x)是定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù),若方程f′(x)=0無(wú)解,且?x∈(0,+∞),f[f(x)-log2016x]=2017,設(shè)a=f(20.5),b=f(logπ3),c=f(log43),則a,b,c的大小關(guān)系是( 。
A.b>c>aB.a>c>bC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于兩個(gè)圖形F1,F(xiàn)2,我們將圖象F1上任意一點(diǎn)與圖形F2上的任意一點(diǎn)間的距離中的最小值,叫作圖形F1與F2圖形的距離,若兩個(gè)函數(shù)圖象的距離小于1,則這兩個(gè)函數(shù)互為“可及函數(shù)”,給出下列幾對(duì)函數(shù),其中互為“可及函數(shù)”的是②④.(寫出所有正確命題的編號(hào))
①f(x)=cosx,g(x)=2;
②f(x)=ex.g(x)=x;
③f(x)=log2(x2-2x+5),g(x)=sin$\frac{π}{2}$-x;
④f(x)=x+$\frac{2}{x}$,g(x)=lnx+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案