分析 ①根據銳角三角形的性質以及三角函數的單調性進行判斷即可.
②根據線面垂直的性質,確定P的運動軌跡即可.
③根據直線方程關系,進行轉化推理即可.
④根據三角形的外心和重心的性質結合向量數量積的公式進行化簡轉化即可.
解答 解:①若△ABC為銳角三角形,則0<A<$\frac{π}{2}$,0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$,即0<π-A-B<$\frac{π}{2}$,
即A+B>$\frac{π}{2}$,∴B>$\frac{π}{2}$-A,
∴0<$\frac{π}{2}$-A<B<$\frac{π}{2}$,即cos($\frac{π}{2}$-A)>cosB,
∴cosB<sinA,故①錯誤,
②如圖1,取A1B1的中點N,BB1的中點Q,
則DB1⊥平面NMQ,
即P點軌跡是線段NQ,
∵在正方形ABB1A1邊界及內部運動,且MP⊥DB1,則P點軌跡長等于$\sqrt{2}$;故②正確,
③由$\frac{a{x}_{1}+b{y}_{1}+c}{a{x}_{2}+b{y}_{2}+c}$=-1得ax1+by1+c=-(ax2+by2+c),
即a(x1+x2)+b(y1+y2)+2c=0,
即a($\frac{{x}_{1}+{x}_{2}}{2}$)+b($\frac{{y}_{1}+{y}_{2}}{2}$)+c=0,
即直線l經過線段MN的中點;故③正確,
④在△ABC中,G,O分別為△ABC的重心和外心,
取BC的中點為D,連接AD、OD、GD,如圖2:
則OD⊥BC,GD=$\frac{1}{3}$AD,
∵$\overrightarrow{OG}$=$\overrightarrow{OD}+\overrightarrow{DG}$,$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$),
由$\overrightarrow{OG}$•$\overrightarrow{BC}$=5,
則($\overrightarrow{OD}+\overrightarrow{DG}$)$•\overrightarrow{BC}$=$\overrightarrow{DG}•\overrightarrow{BC}$=$-\frac{1}{6}$($\overrightarrow{AB}+\overrightarrow{AC}$)$•\overrightarrow{BC}$=5,
即-$\frac{1}{6}$•($\overrightarrow{AB}+\overrightarrow{AC}$)($\overrightarrow{AC}-\overrightarrow{AB}$)=5,
則${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}$=-30,
又BC=5,
則有|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2+$\frac{6}{5}$|$\overrightarrow{BC}$|2>|$\overrightarrow{AC}$|2+|$\overrightarrow{BC}$|2,
由余弦定理可得cosC<0,
即有C為鈍角.則三角形ABC為鈍角三角形;故④錯誤,
故答案為:②③
點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,難度較大.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com